What is the 3D wave function and energy of an electron in an extended 1D well?

  • Thread starter Thread starter sgod88
  • Start date Start date
  • Tags Tags
    1d 3d
sgod88
Messages
6
Reaction score
0
1. Quantum well structure can be realized by sandwiching layers of semiconductor and two insulators.
This sandwiching problem was often treated with 1 D infinite well. Suppose now the problem is 3 dimensional well with length L at z direction from 0 to L, at which

V(x,y,z)= 0 when 0<z<L
infinity otherwise
where V(x) and V(y) is 0. We assume x and y be infinitely large.

Wht is the total energy and the wave function of the electron in such well?
2. I have done the separation of varibales in the Schrodinger equation and obtained the three independent wavefunction.
-\frac{\hbar^{2}}{2m}\psi_{x_{i}}=E \psi_{x_{i}}
But i don't know what is the boundary condition of the x and y.
I only got psi(z) is the psi of the one d wavefunction.
\psi_{z}=\sqrt{\frac{2}{L}}sin(\frac{n \pi z}{L})
I just cannot get the constant for the wavefunctions for x and y.
I know that
\psi(x)=\psi(x+2\pi)
but I still cannot get the value of the constant and the energy.
 
Last edited:
Physics news on Phys.org
Why do you assume periodic boundary conditions?

It is an infinite well. Remember, that means the wavefunction is zero at all boundaries of the well.
 
But now V(x,y,z)=V(z), where V is not a function of x and y anymore.
With this condition, in x and y, the wavefunction is certainly not zero, it is a free particle.
\psi_{x}=e^{i(kx-wt)}
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top