Extracellular electron transfer (EET)

  • Thread starter Thread starter Dotini
  • Start date Start date
  • Tags Tags
    Electron
AI Thread Summary
A recent study led by Peter Girguis and Arpita Bose reveals that the bacterium Rhodopseudomonas palustris can harvest electricity from minerals deep in soil while remaining on the surface, utilizing natural conductivity. This finding, published in Nature Communications, highlights the organism's ability to perform extracellular electron transfer (EET) and begins to explore the genetic and molecular mechanisms behind this process. Understanding the genes involved in EET could pave the way for innovative biotechnological applications, particularly in energy and biofuel production. However, practical applications of EET remain a distant goal.
Dotini
Gold Member
Messages
634
Reaction score
231
I ran across this interesting article which seems to suggest that a single cell organism on a surface can harvest electricity from a distant source below ground. Is this a potentially important discovery?

http://www.sciencedaily.com/releases/2014/03/140310144000.htm
Led by Peter Girguis, the John L. Loeb Associate Professor of the Natural Sciences, and Arpita Bose, a post-doctoral fellow in Organismic and Evolutionary Biology, a team of researchers showed that the commonly found bacterium Rhodopseudomonas palustris can use natural conductivity to pull electrons from minerals located deep in soil and sediment while remaining at the surface, where they absorb the sunlight needed to produce energy. The study is described in a February 26 paper in Nature Communications.
 
Biology news on Phys.org
Here's a link to the original study: A. Bose, E.J. Gardel, C. Vidoudez, E.A. Parra, P.R. Girguis. 2014. Electron uptake by iron-oxidizing phototrophic bacteria. Nature Communications, 5: 3391. doi:10.1038/ncomms4391.

Organisms capable of extracellular electron transfer (EET) have already been identified, so this is not the main point of the study. Rather, this study is important because the authors are able to begin characterizing the genetic and molecular basis for the EET activity of these bacteria. Knowing which genes are involved in EET and how the process occurs at a molecular level can potentially aid in developing new biotechnological applications (for example in energy or biofuel generation). Of course, we're still very far away from even knowing whether EET can be practical for such biotechnological applications.
 
  • Like
Likes 1 person
https://www.nhs.uk/mental-health/conditions/body-dysmorphia/ Most people have some mild apprehension about their body, such as one thinks their nose is too big, hair too straight or curvy. At the extreme, cases such as this, are difficult to completely understand. https://www.msn.com/en-ca/health/other/why-would-someone-want-to-amputate-healthy-limbs/ar-AA1MrQK7?ocid=msedgntp&cvid=68ce4014b1fe4953b0b4bd22ef471ab9&ei=78 they feel like they're an amputee in the body of a regular person "For...
Thread 'Did they discover another descendant of homo erectus?'
The study provides critical new insights into the African Humid Period, a time between 14,500 and 5,000 years ago when the Sahara desert was a green savanna, rich in water bodies that facilitated human habitation and the spread of pastoralism. Later aridification turned this region into the world's largest desert. Due to the extreme aridity of the region today, DNA preservation is poor, making this pioneering ancient DNA study all the more significant. Genomic analyses reveal that the...
Whenever these opiods are mentioned they usually mention that e.g. fentanyl is "50 times stronger than heroin" and "100 times stronger than morphine". Now it's nitazene which the public is told is everything from "much stronger than heroin" and "200 times stronger than fentany"! Do these numbers make sense at all? How do they arrive at them? Kill thousands of mice? En passant: nitazene have already been found in both Oxycontin pills and in street "heroin" here, so Naloxone is more...

Similar threads

Back
Top