Factoring Algebraic Expression

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Expression Factoring
Click For Summary

Discussion Overview

The discussion revolves around the factorization of the algebraic expression $$30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd$$. Participants explore different methods and approaches to factor the expression, focusing on algebraic manipulation and grouping of terms.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests a general factorization approach using the form $$(Aa+Bb+Cc+Dd)(\alpha a + \beta b + \gamma c + \delta d)$$.
  • Another participant proposes grouping terms into pairs, specifically $30a^2+68ab+30b^2$ and $30c^2+87cd+30d^2$, and factoring each separately, leading to expressions involving $u$, $v$, $p$, and $q$.
  • A later reply expresses a desire for a complete solution, indicating a lack of clarity on the progress made in the discussion.

Areas of Agreement / Disagreement

Participants present differing methods for factorization, and there is no consensus on a single approach or solution. The discussion remains unresolved regarding the complete factorization of the expression.

Contextual Notes

Participants have not fully resolved the mathematical steps involved in their proposed methods, and assumptions regarding the factorization techniques have not been explicitly stated.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factor the expression

$$30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd$$
 
Mathematics news on Phys.org
anemone said:
Factor the expression

$$30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd$$

Since all combinations are present, factorization can likely be done as
$$(Aa+Bb+Cc+Dd)(\alpha a + \beta b + \gamma c + \delta d)$$

From the coefficients of the squares we can conclude that:
$$
\alpha=\frac {30} A, \beta=\frac {30} B, \gamma=\frac {30} C, \delta=\frac {30} D
$$
Let's pick $-61bc$ to evaluate.

We get:
$$\begin{array}{l}
B\gamma + C\beta=-61 \\
B \frac{30}C + C\frac{30}B=-61 \\
B=-\frac 5 6 C \vee B=-\frac 6 5 C
\end{array}$$
Since we have a free choice for what goes left and what goes right, and we also have a free choice how to divide the constant 30, we can choose:
$$B = 5 \wedge C = -6$$
Repeating for the coefficients of $ab$, $ac$, and $ad$, we find:
$$A=3 \wedge (D=-15 \vee D=-\frac 3 5)$$
Verification shows that only $D=-15$ fits, which gives indeed a solution.

In other words, the expression factorizes as:
$$(3a+5b-6c-15d)(10a+6b-5c-2d) \qquad \blacksquare$$
 
I might do it somewhat different. First I would group some of the terms as follows

$30a^2+68ab+30b^2$ and $30c^2+87cd+30d^2$

and factor each of these separately. This gives

$2(3a+5b)(5a+3b)$ and $3(2c+5d)(5c+2d)$.

Then let $3a+5b = u$, $5a+3b = v$, $2c+5d = p$, and $5c+2d=q$.

Solve for $a, b, c$ and $d$ and substitute into the entire expression giving

$ 2 v u + 3 q p - 6 v p - u q$

and factor this.
 
Hi I like Serena and Jester,

Thanks for participating to this challenge problem and my solution is quite similar to I like Serena's approach and I'll post my solution here later today.
anemone
 
Where is the complete solution to this problem?
Anyone?
 
Last edited:

Similar threads

Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K