MHB Factoring Algebraic Expression

Click For Summary
The discussion revolves around factoring the expression 30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd. Participants suggest starting with grouping terms to simplify the factorization process. One method involves factoring pairs like 30a^2+68ab+30b^2 and 30c^2+87cd+30d^2 separately. The suggested approach leads to expressions that can be substituted and further factored. The conversation concludes with a request for a complete solution to the problem.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factor the expression

$$30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd$$
 
Mathematics news on Phys.org
anemone said:
Factor the expression

$$30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd$$

Since all combinations are present, factorization can likely be done as
$$(Aa+Bb+Cc+Dd)(\alpha a + \beta b + \gamma c + \delta d)$$

From the coefficients of the squares we can conclude that:
$$
\alpha=\frac {30} A, \beta=\frac {30} B, \gamma=\frac {30} C, \delta=\frac {30} D
$$
Let's pick $-61bc$ to evaluate.

We get:
$$\begin{array}{l}
B\gamma + C\beta=-61 \\
B \frac{30}C + C\frac{30}B=-61 \\
B=-\frac 5 6 C \vee B=-\frac 6 5 C
\end{array}$$
Since we have a free choice for what goes left and what goes right, and we also have a free choice how to divide the constant 30, we can choose:
$$B = 5 \wedge C = -6$$
Repeating for the coefficients of $ab$, $ac$, and $ad$, we find:
$$A=3 \wedge (D=-15 \vee D=-\frac 3 5)$$
Verification shows that only $D=-15$ fits, which gives indeed a solution.

In other words, the expression factorizes as:
$$(3a+5b-6c-15d)(10a+6b-5c-2d) \qquad \blacksquare$$
 
I might do it somewhat different. First I would group some of the terms as follows

$30a^2+68ab+30b^2$ and $30c^2+87cd+30d^2$

and factor each of these separately. This gives

$2(3a+5b)(5a+3b)$ and $3(2c+5d)(5c+2d)$.

Then let $3a+5b = u$, $5a+3b = v$, $2c+5d = p$, and $5c+2d=q$.

Solve for $a, b, c$ and $d$ and substitute into the entire expression giving

$ 2 v u + 3 q p - 6 v p - u q$

and factor this.
 
Hi I like Serena and Jester,

Thanks for participating to this challenge problem and my solution is quite similar to I like Serena's approach and I'll post my solution here later today.
anemone
 
Where is the complete solution to this problem?
Anyone?
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K