MHB Factoring Algebraic Expression

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factor the expression

$$30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd$$
 
Mathematics news on Phys.org
anemone said:
Factor the expression

$$30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd$$

Since all combinations are present, factorization can likely be done as
$$(Aa+Bb+Cc+Dd)(\alpha a + \beta b + \gamma c + \delta d)$$

From the coefficients of the squares we can conclude that:
$$
\alpha=\frac {30} A, \beta=\frac {30} B, \gamma=\frac {30} C, \delta=\frac {30} D
$$
Let's pick $-61bc$ to evaluate.

We get:
$$\begin{array}{l}
B\gamma + C\beta=-61 \\
B \frac{30}C + C\frac{30}B=-61 \\
B=-\frac 5 6 C \vee B=-\frac 6 5 C
\end{array}$$
Since we have a free choice for what goes left and what goes right, and we also have a free choice how to divide the constant 30, we can choose:
$$B = 5 \wedge C = -6$$
Repeating for the coefficients of $ab$, $ac$, and $ad$, we find:
$$A=3 \wedge (D=-15 \vee D=-\frac 3 5)$$
Verification shows that only $D=-15$ fits, which gives indeed a solution.

In other words, the expression factorizes as:
$$(3a+5b-6c-15d)(10a+6b-5c-2d) \qquad \blacksquare$$
 
I might do it somewhat different. First I would group some of the terms as follows

$30a^2+68ab+30b^2$ and $30c^2+87cd+30d^2$

and factor each of these separately. This gives

$2(3a+5b)(5a+3b)$ and $3(2c+5d)(5c+2d)$.

Then let $3a+5b = u$, $5a+3b = v$, $2c+5d = p$, and $5c+2d=q$.

Solve for $a, b, c$ and $d$ and substitute into the entire expression giving

$ 2 v u + 3 q p - 6 v p - u q$

and factor this.
 
Hi I like Serena and Jester,

Thanks for participating to this challenge problem and my solution is quite similar to I like Serena's approach and I'll post my solution here later today.
anemone
 
Where is the complete solution to this problem?
Anyone?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
964
Replies
19
Views
3K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
Back
Top