MHB Factoring Algebraic Expression

AI Thread Summary
The discussion revolves around factoring the expression 30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd. Participants suggest starting with grouping terms to simplify the factorization process. One method involves factoring pairs like 30a^2+68ab+30b^2 and 30c^2+87cd+30d^2 separately. The suggested approach leads to expressions that can be substituted and further factored. The conversation concludes with a request for a complete solution to the problem.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factor the expression

$$30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd$$
 
Mathematics news on Phys.org
anemone said:
Factor the expression

$$30(a^2+b^2+c^2+d^2)+68ab-75ac-156ad-61bc-100bd+87cd$$

Since all combinations are present, factorization can likely be done as
$$(Aa+Bb+Cc+Dd)(\alpha a + \beta b + \gamma c + \delta d)$$

From the coefficients of the squares we can conclude that:
$$
\alpha=\frac {30} A, \beta=\frac {30} B, \gamma=\frac {30} C, \delta=\frac {30} D
$$
Let's pick $-61bc$ to evaluate.

We get:
$$\begin{array}{l}
B\gamma + C\beta=-61 \\
B \frac{30}C + C\frac{30}B=-61 \\
B=-\frac 5 6 C \vee B=-\frac 6 5 C
\end{array}$$
Since we have a free choice for what goes left and what goes right, and we also have a free choice how to divide the constant 30, we can choose:
$$B = 5 \wedge C = -6$$
Repeating for the coefficients of $ab$, $ac$, and $ad$, we find:
$$A=3 \wedge (D=-15 \vee D=-\frac 3 5)$$
Verification shows that only $D=-15$ fits, which gives indeed a solution.

In other words, the expression factorizes as:
$$(3a+5b-6c-15d)(10a+6b-5c-2d) \qquad \blacksquare$$
 
I might do it somewhat different. First I would group some of the terms as follows

$30a^2+68ab+30b^2$ and $30c^2+87cd+30d^2$

and factor each of these separately. This gives

$2(3a+5b)(5a+3b)$ and $3(2c+5d)(5c+2d)$.

Then let $3a+5b = u$, $5a+3b = v$, $2c+5d = p$, and $5c+2d=q$.

Solve for $a, b, c$ and $d$ and substitute into the entire expression giving

$ 2 v u + 3 q p - 6 v p - u q$

and factor this.
 
Hi I like Serena and Jester,

Thanks for participating to this challenge problem and my solution is quite similar to I like Serena's approach and I'll post my solution here later today.
anemone
 
Where is the complete solution to this problem?
Anyone?
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Just chatting with my son about Maths and he casually mentioned that 0 would be the midpoint of the number line from -inf to +inf. I wondered whether it wouldn’t be more accurate to say there is no single midpoint. Couldn’t you make an argument that any real number is exactly halfway between -inf and +inf?

Similar threads

Replies
3
Views
1K
Replies
19
Views
3K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
Back
Top