Is Energy Transmitted Faster than Light through Electro-Weak Fields?

tickle_monste
Messages
67
Reaction score
1
I understand that in our universe, the speed of light represents a limit which objects of mass cannot reach. I also understand that at sufficiently high energies, the electromagnetic force becomes unified with the weak force to make the electro-weak force.

Now my question is, is energy transmitted faster than light through an electro-weak field? What about a strong field? Etc. etc. It seems to me that energy would be transmitted faster through these fields, and that if it didn't, particles would not be able to exist (my extended interpretation of Fermat's Theorem). If this were the case, I would presume there would be serious implications regarding the time-evolution of the universe from the Big Bang.

No detail goes unappreciated.
 
Physics news on Phys.org
tickle_monste said:
I Now my question is, is energy transmitted faster than light through an electro-weak field? What about a strong field? Etc. etc.

No and no. Etc. etc.

tickle_monste said:
It seems to me that energy would be transmitted faster through these fields, and that if it didn't, particles would not be able to exist (my extended interpretation of Fermat's Theorem).

Which theorem? And is this in the peer-reviewed literature anywhere?
 
Within the standard model, all the fundamental forces are mediated by gauge bosons, massive or otherwise, which are constrained to travel <= the speed of light.

e.g. the exchange of photons between electrons leads to their mutual electromagnetic replusion. Clearly the force transfer occurs at the speed of light.
 
It is good to remember that the universe has a maximum speed limit for motion in inertial frames, and light moves at this speed because photons are massless. For the stong force, the gluons are massless, and so they move at the maximum speed, so we could call it the "speed of glue." The 'weak field' , on the other hand, is made of W and Z particles which do have mass, and anything with mass propogates slower than the speed of light (glue).

Now my question is, is energy transmitted faster than light through an electro-weak field? What about a strong field? Etc. etc.

Absolutely not, no, never.

It seems to me that energy would be transmitted faster through these fields, and that if it didn't, particles would not be able to exist (my extended interpretation of Fermat's Theorem).

If you phrase it in terms of a question, "can I use Fermat's principle..." (you do mean principle instead of theorem, right?) then maybe the PF moderators will let you discuss that 'extension' (I would read it) but if you say that your own intuition has led you to a faster-than-light conclusion then no will take that seriously.
 
Thank you, confinement, and everybody else, all these answers helped a lot. I'm not sure whether I mean Fermat's principle or Fermat's theorem, because I learned about it in a Calc II text. They called it Fermat's theorem, and it says, "Light will always take the path over which it can travel the most distance in the least time." Which would be a straight line in a vacuum. It was 100% my own intuition that led me to my "extension" of Fermat's theorem. I do not expect it to be taken seriously, I'm looking for enlightenment on where I'm thinking wrong.

If light would always travel the greatest distance in the least time, then it seems that if it were to enter a particle, then the speed of light within the particle must be greater than in the vacuum. I first tried to explain the absorption of light by a particle by collisions of light with particles, where in that specific instant of time, the light would have to choose the path that enters the particle, and the particle remains stable because it would take a longer time to exit the particle than to remain within.

Basically my first way of thinking about it is that light simply can just travel faster within the particle, and the second way says that it's just circumstantial that the light is staying within the particle. Is either of these ways of thinking correct? From what I've gathered so far, my first way is wrong. I'm just here to ask questions.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top