Feyman's sum over path hypothesis

  • Thread starter Thread starter sage
  • Start date Start date
  • Tags Tags
    Path Sum
sage
Messages
110
Reaction score
0
can you give me a primer on feyman's sum over path hypothesis.no maths please, just what it tells and its current standing with respect to other theories on this matter.
 
Physics news on Phys.org
Try "QED" by Feynman. It is very readable.
 
Originally posted by sage
can you give me a primer on feyman's sum over path hypothesis.no maths please, just what it tells and its current standing with respect to other theories on this matter.

Path-integrals are neither hypothesis nor theory, but instead powerful and indispensable tools to characterize and calculate the behaviour of quantum systems. To understand them, let's first look at a familiar classical system.

If we know where and with what velocity an ordinary baseball is thrown, it's subsequent trajectory is uniquely determined by Newton's 2nd law F = ma. Putting it in a slightly strange but - as we'll see - helpful way, given it's initial position x(0) and velocity v(0) at time t = 0, the probability P{[x(0),v(0)],[x(t),v(t)]} of finding the ball at some other location x(t) with some other velocity v(t) at time t is 100% if these lie on the trajectory predicted by F = ma, and 0% if they don't.

Unlike with the baseball, according to quantum theory one cannot simultaneously know both the position and velocity - or more accurately, momentum - of an electron. In particular, we must choose whether to specify an electron's initial state in terms of either position or mometum, but not both. Suppose we choose to specify it's position x(0) at time t = 0. We then ask for the probabllity P[x(0),x(t)] of finding it at some other position x(t) at some later time t.

Now, unlike P{[x(0),v(0)],[x(t),v(t)]}, no matter what x(t) is, P[x(0),x(t)] is never 0% or 100%. Put another way, every path from x(0) to x(t), no matter how crazy, contributes to P[x(0),x(t)]. This counter-intuitive fact is a direct result of our not being able to say anything about the electron's momentum. The path-integral for this system is just the sum over the contributions to P[x(0),x(t)] from each and every path.

To explain in a worthwhile way the meaning and form of these contributions and the precise relation in this context between the classical and quantum viewpoints is difficult without a little math. Let me know if you want me to continue.

More generally, instead of particles and paths, we can study quantum fields and their evolution. This is the subject of quantum field theory. It's been applied successfully to all the known interactions (weak, strong and electromagnetic) except gravity.
 
Last edited:
Originally posted by sage
can you give me a primer on feyman's sum over path hypothesis.no maths please, just what it tells and its current standing with respect to other theories on this matter.

sum over histories. Read QED.
 
Feynman expanded the wave functions that you get from Schrodinger's equation in terms of particle paths that the particle might follow. With each path will be associated a phase, and so the are able to interfere just like waves. Unfortunately there are huge numbers of trajectories to sum over, and most are not those determined by classical physics. However, when you approach a semi-classical limit you discover that only the classical paths contribute significantly to the expansion. All other paths interfere destructively. Therefore you can begin to see just how classical physics results from quantum physics.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top