Fields generated by a rotating disk

lailola
Messages
46
Reaction score
0

Homework Statement



We have an uniformly charged disk with total charge q, which is rotating around its axis with constant angular velocity w. Calculate electric and magnetic field in the axis and in the rotation plane. Calculate the radiated power in one cicle.



Homework Equations




Biot-Savart law.
v=wr

The Attempt at a Solution



I only know how to calculate the magnetic field in the center, using directly the biot-savart law:

d\vec{B}=\frac{\mu}{4\pi}dq\frac{\vec{v}×\hat{r}}{r^2}
B=∫_{0}^{a} \frac{\mu}{4\pi}\sigma 2\pi r dr\frac{wr}{r^2}=\frac{\mu w \sigma a}{2}=\frac{\mu w q}{2\pi a}

How can I calculate the rest?

Thank you.
 
Last edited:
Physics news on Phys.org
Your answer is wrong. For one thing, you should note your result is independent of where you are on the z-axis. That can't be right. Be a bit more careful about what each variable stands for in your integral.
 
vela said:
Your answer is wrong. For one thing, you should note your result is independent of where you are on the z-axis. That can't be right. Be a bit more careful about what each variable stands for in your integral.

You're right, It's the field in the center.
 
I've already calculated the magnetic field along the axis. But, in the plane? And, what about the electric field? Any help?

thanks
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top