Figuring out compounding interest

  • Thread starter Thread starter drymetal
  • Start date Start date
  • Tags Tags
    Interest
drymetal
Messages
7
Reaction score
0
I talk to people a lot about the power in investing their money. I've always relied on Excel to figure out things though and I'm getting sick of it. So I figured there was a way to do it simpler with math than making gigantic lists that detailed every month and year a person invests money.

So, let's say I have 10,000 and will expect an 8% yearly return on it. I figured out a formula or whatever that will give me the correct answer quickly:

10,000 * 1.08^n

Or say it was for 20 years: 10,000 * 1.08^20

This is great. But it doesn't do a whole lot because people generally contribute money regularly to their investments. Which gets me to my question...


I wanted to keep it simple. Let's say a person has $100. They invest it and can expect to earn 8% every year. Additionally, they add an additional $100 every year. The answer I got in Excel was $4,044.63 after 18 years.

After countless months beating my head against a wall and talking to my cat, I came up with this:

100(1+.08)18+100[((1+.08)18-1)/.08]

However, that equals $4,144.63. And to be honest, I don't remember how the heck I came up with that crazy looking equation. :(

But, it is giving me the wrong answer! By $100! I must be doing something right. lol

Can anyone help me simplify and understand this? Thanks!
 
Mathematics news on Phys.org
Your formula is correct, the difference is that you are assuming that the person invests $10,000 plus an additional $100 on day one. The formula that excel uses is starting the yearly $100 investments at the end of the first year.
 
I don't understand. Is there just a regular formula with x's and y's and all those happy letters that does this? You know, where I can just plug the numbers in. The formula above I forgot how I came up with it.

The answer isn't as important to me as understanding it. Not that I don't want an answer - I do. But I need to understand it. Understanding it is paramount to me. I hope by learning the why - I can figure out equations on my own easier in the future.
 
If the yearly investment and the interest rate are fixed, you could use power series to solve this:

let a = 1.08

you want to calculate the sum a^18 + a^17 + ... + a^1

multiply by a = a^19 + a^18 + ... a^2

subtract the original equation:

Code:
 a^19 + a^18 + ... + a^2
            a^18 + ... + a^2 + a^1
--------------------------------
 a^19                            - a^1

So the result is (a - 1)(a^18 + a^17 + ... + a^1) = (a^19 - a^1)

To get the original number divide by (a-1)

(a^18 + a^17 + ... + a^1) = (a^19 - a^1)/(a-1)

For your case you have 100 x (1.08^19 - 1.08) / (1.08 - 1) ~= 4044.6263239

Although this is nice for doing algebra, it's probably better to use a spread sheet, to handle variations in monthly deposits, changes in interest rates, and also allowing for interest that is compounded monthly (or daily) instead of yearly.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
2K
Replies
2
Views
11K
Replies
2
Views
2K
Replies
9
Views
2K
Replies
2
Views
7K
Replies
5
Views
2K
Back
Top