MHB Find 4-adic Expansion of $\frac{1}{5}$ - Wondering

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Expansion
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to find the $4$-adic expansion of $\frac{1}{5}$. I have done the following: $\displaystyle{\frac{1}{5}\equiv a_0\pmod 4 \Rightarrow a_0\equiv \frac{1}{5}\pmod 4}$
We multiply by $5$ and we get $\displaystyle{5a_0\equiv 1\pmod 4}$.
The only residue of division by $4$ that solves this is $a_0=1$. Then we have $\displaystyle{\frac{1}{5}-1\equiv 4a_1 \pmod {4^2} \Rightarrow -\frac{4}{5}\equiv 4a_1\pmod {4^2}}$.
We divide by $4$ and we get $\displaystyle{-\frac{1}{5}\equiv a_1\pmod {4}}$.
We multiply then by $5$ and we get $\displaystyle{-1\equiv 5a_1\pmod {4}\Rightarrow 5a_1\equiv -1 \pmod 4 \Rightarrow 5a_1\equiv 3\pmod 4 \Rightarrow a_1\equiv 3\pmod 4}$. The only residue of division by $4$ that solves this is $a_1=3$. Then we have $\displaystyle{\frac{1}{5}-1-3\cdot 4\equiv 4^2a_2 \pmod {4^3} \Rightarrow -\frac{4}{5}-3\cdot 4\equiv 4^2a_2\pmod {4^3}}$.
We multiply by $4$ and we get $\displaystyle{-\frac{1}{5}-3\equiv 4a_2\pmod {4^2}\Rightarrow -\frac{16}{5}\equiv 4a_2 \pmod {4^2}}$, we multiply then by $5$ and we get $\displaystyle{-16\equiv 20a_2\pmod {4^2} \Rightarrow 0\equiv 4a_2 \pmod {4^2} \Rightarrow 4a_2\equiv 0\pmod {4^2}}$. We divide by $4$ and we get $\displaystyle{a_2\equiv 0\pmod {4}}$. The only residue of division by $4$ that solves this is $a_2=0$. Then we have $\displaystyle{\frac{1}{5}-1-3\cdot 4\equiv 4^3a_3 \pmod {4^4} \Rightarrow -\frac{4}{5}-3\cdot 4\equiv 4^3a_3\pmod {4^4}}$.
We divide by $4$ and we get $\displaystyle{-\frac{1}{5}-3\equiv 4^2a_3\pmod {4^3}\Rightarrow -\frac{16}{5}\equiv 4^2a_3 \pmod {4^3}}$, then we divide by $4^2$ and we get $\displaystyle{ -\frac{1}{5}\equiv a_3 \pmod 4}$. Then we multiply by $5$ and we get $\displaystyle{ -1\equiv 5a_3 \pmod 4\Rightarrow 5a_3\equiv -1 \pmod 4 \Rightarrow a_3\equiv 3 \pmod 4 }$. The only residue of division by $4$ that solves this is $a_3=1$.


Then we have $\displaystyle{\frac{1}{5}-1-3\cdot 4-4^3\equiv 4^4a_4 \pmod {4^5} \Rightarrow -\frac{4}{5}-3\cdot 4-4^3\equiv 4^4a_4\pmod {4^5}}$.
We divide by $4$ and get $\displaystyle{-\frac{1}{5}-3-4^2\equiv 4^3a_4\pmod {4^4}\Rightarrow -\frac{16}{5}-4^2\equiv 4^3a_4 \pmod {4^4}}$, then we divide by $4^2$ and get $\displaystyle{ -\frac{1}{5}-1\equiv 4a_4 \pmod 4^2 \Rightarrow -\frac{6}{5}\equiv 4a_4 \pmod {4^2}}$. We multiply then by $5$ and get $\displaystyle{ -6\equiv 20a_4 \pmod {4^2}\Rightarrow 20a_4\equiv -6 \pmod {4^2} \Rightarrow 4a_4\equiv 10 \pmod {4^2} }$.
This doesn't have a solution, right?

Where have I done something wrong? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
I want to find the $4$-adic expansion of $\frac{1}{5}$. I have done the following:

.
.
.

Then we have $\displaystyle{\frac{1}{5}-1-3\cdot 4\equiv 4^3a_3 \pmod {4^4} \Rightarrow -\frac{4}{5}-3\cdot 4\equiv 4^3a_3\pmod {4^4}}$.
We divide by $4$ and we get $\displaystyle{-\frac{1}{5}-3\equiv 4^2a_3\pmod {4^3}\Rightarrow -\frac{16}{5}\equiv 4^2a_3 \pmod {4^3}}$, then we divide by $4^2$ and we get $\displaystyle{ -\frac{1}{5}\equiv a_3 \pmod 4}$. Then we multiply by $5$ and we get $\displaystyle{ -1\equiv 5a_3 \pmod 4\Rightarrow 5a_3\equiv -1 \pmod 4 \Rightarrow {\color{red}a_3\equiv 3 \pmod 4 }}$. The only residue of division by $4$ that solves this is $\color{red}a_3=\Huge 3$.


Then we have $\displaystyle{\frac{1}{5}-1-3\cdot 4-4^3\equiv 4^4a_4 \pmod {4^5} \Rightarrow -\frac{4}{5}-3\cdot 4-4^3\equiv 4^4a_4\pmod {4^5}}$.
We divide by $4$ and get $\displaystyle{-\frac{1}{5}-3-4^2\equiv 4^3a_4\pmod {4^4}\Rightarrow -\frac{16}{5}-4^2\equiv 4^3a_4 \pmod {4^4}}$, then we divide by $4^2$ and get $\displaystyle{ -\frac{1}{5}-1\equiv 4a_4 \pmod 4^2 \Rightarrow -\frac{6}{5}\equiv 4a_4 \pmod {4^2}}$. We multiply then by $5$ and get $\displaystyle{ -6\equiv 20a_4 \pmod {4^2}\Rightarrow 20a_4\equiv -6 \pmod {4^2} \Rightarrow 4a_4\equiv 10 \pmod {4^2} }$.
This doesn't have a solution, right?

Where have I done something wrong? (Wondering)
It looks as though the coefficients will be alternately $3$ and $0$ (after the initial $1$).
 
Show that 1/5 is ...
View attachment 6286

Using () to represent the repeated digits under the vinculum and everything base 4.
Then show that 1/5 is ...
(03)1.(0)

Step 1: Calculate 4/5 (base 4)

Code:
      0.3030...
    ------------
11 / 10.0000...
      3 3
      ---
        100
         33
        ---
          etc.


Step 2: Calculate -4/5 (4-adic)
Notice that
if n = ...3030.3030...
then 100 n = n
Therefore n=0
and
-4/5 = (03)0.(0)Step 3: Calculate 1/5 (4-adic)
using 1/5 = 1+(-4/5)
1/5 = (03)1.(0)Note: Quaternary and 4-adic number expansions have different metric spaces. However, they share the same arithmetic for the + and * operations.
 

Attachments

  • Capture.JPG
    Capture.JPG
    3.7 KB · Views: 109
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top