MHB Find a,b,c,d for Max $a+b-c+d$

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion revolves around finding real numbers a, b, c, and d that satisfy the inequality f(x) = a cos x + b cos 2x + c cos 3x + d cos 4x ≤ 1 for all real x. Participants explore the conditions under which the expression a + b - c + d can be maximized. The conversation includes mathematical analysis and potential strategies for deriving the optimal values of a, b, c, and d. Key points involve the use of trigonometric identities and inequalities to ensure the function remains bounded by 1. Ultimately, the goal is to determine the specific values that maximize the expression while adhering to the given constraints.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ and $d$ be real numbers that satisfy the equation $f(x)=a\cos x+b\cos 2x+c\cos 3x+d\cos 4x \le 1$ for any real number $x$. Find the values of $a,\,b,\,c$ and $d$ such that $a+b-c+d$ takes the maximum number.
 
Mathematics news on Phys.org
Since

$f(0)=a+b+c+d,\\f(\pi)=-a+b-c+d,\\f\left(\dfrac{\pi}{3}\right)=\dfrac{a}{2}-\dfrac{b}{2}-c-\dfrac{d}{2},$

then

$a+b-c+d=f(0)+\dfrac{2}{3}f(\pi)+\dfrac{4}{3}f\left(\dfrac{\pi}{3}\right)\le 3$ iff

$f(0)=f(\pi)=f\left(\dfrac{\pi}{3}\right)=1$, i.e. if $a=1,\,b+d=1$ and $c=-1$.

Let $t=\cos x,\,-1\le 4 \le 1$, then we have

$\begin{align*}f(x)-1&=\cos x+b\cos 2x-\cos 3x+d\cos 4x-1\\&=t+(1-d)(2t^2-1)-(4t^3-3t)+d(8t^4-8t^2+1)-1\\&=2(1-t^2)[-4dt^2+2t+d-1)]\\&\le 0\end{align*}$

That is, $4dt^2-2t+1-d\ge 0$

Taking $t=\dfrac{1}{2}+k,\,|k|<\dfrac{1}{2}$ we have

$k[2d-1+4dk]\ge 0$

We see that $d=\dfrac{1}{2}$, which gives

$4dt^2-2t+1-d=2t^2-2t+\dfrac{1}{2}=2\left(t-\dfrac{1}{2}\right)^2\ge 0$

So the maximum of $a+b-c+d$ is 3, where $(a,\,b,\,c,\,d)=\left(1,\,\dfrac{1}{2},\,-1,\,\dfrac{1}{2}\right)$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top