MHB Find a real number for a continuous function

AI Thread Summary
To find a real number f for the continuous piecewise function, the two expressions must be equal at x=0. This leads to the equation -2f = 5f^2, which simplifies to the quadratic equation 5f^2 + 2f = 0. The solutions to this equation are f = 0 or f = -2/5. Thus, the real values of f that ensure the function is continuous are 0 and -2/5. The discussion emphasizes the importance of continuity at the boundary of the piecewise function.
Maxers99
Messages
2
Reaction score
0
How would I go about doing this?

Find a real number f so that: is a continuous function

y = { 3x - 2f if x is less than or equal to 0. }
{ 2x2 + x + 5f2 if x is less than 0 }
 
Mathematics news on Phys.org
Hi Maxers99, welcome to MHB!:)

I am pretty sure you mean the domain for the second function is set for $x>0$, i.e. what we have here is the following piece-wise function:

$\displaystyle y(x)=\begin{cases}3x-2f & x\le0\\2x^2+x+5f^2 & x>0\\ \end{cases}$

Since $y$ is a continuous function, so at $x=0$, the two expressions must be equal. Can you proceed with this little hint?
 
At the risk of being somewhat redundant, to put what anemone has stated in the parlance of limits, we require:

$$\lim_{x\to0^{-}}(3x-2f)=\lim_{x\to0^{+}}\left(2x^2+x+5f^2 \right)$$
 
So if x=0, it would then be -2f = 5f^2
 
Maxers99 said:
So if x=0, it would then be -2f = 5f^2

Correct!:)

But bear in mind that we are asked to find the real values of $f$. So now we have the quadratic equation in terms of $f$, i.e.

$-2f = 5f^2$

or

$ 5f^2+2f=0$

do you know how to solve this quadratic equation for $f$?
 
anemone said:
Correct!:)

But bear in mind that we are asked to find the real values of $f$. So now we have the quadratic equation in terms of $f$, i.e.

$-2f = 5f^2$
At this point, either f= 0 or we can divide both sides by f.

or

$ 5f^2+2f=0$

do you know how to solve this quadratic equation for $f$?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top