Find "a" which is a real number

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around finding a real number \( a \) that satisfies a specific equation involving square roots. Participants explore various methods to manipulate and solve the equation, sharing their approaches and solutions.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • Post 1 presents the equation \( a - \sqrt{4-a}\sqrt{5-a} = \sqrt{5-a}\sqrt{6-a} + \sqrt{6-a}\sqrt{4-a} \) and asks to find \( a \).
  • Post 2 reiterates the equation and prompts for a solution, indicating a focus on finding \( a \).
  • Post 3 acknowledges a participant's method of factorization, expressing appreciation for the approach without providing a solution.
  • Post 4 details a method involving substitutions, letting \( m = (6-a) + (4-a) \) and transforming the original equation into a new form, ultimately leading to a derived value of \( a = \frac{431}{120} \).

Areas of Agreement / Disagreement

Participants do not reach a consensus on the solution to the equation, as multiple approaches are presented, and the discussion remains open with varying methods and interpretations.

Contextual Notes

The discussion includes complex manipulations of the original equation, and assumptions made during substitutions may not be fully explored or validated. The steps taken by participants involve various transformations that could depend on specific conditions of \( a \).

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$a$ is a real number that satisfies the equation $a-\sqrt{4-a}\sqrt{5-a}=\sqrt{5-a}\sqrt{6-a}+\sqrt{6-a}\sqrt{4-a}$.

Find $a$.
 
Mathematics news on Phys.org
Re: Find a

anemone said:
$a$ is a real number that satisfies the equation $a-\sqrt{4-a}\sqrt{5-a}=\sqrt{5-a}\sqrt{6-a}+\sqrt{6-a}\sqrt{4-a}$.

Find $a$.
My solution
Moving everything to one side of the equal sign, the expression can be factored as

$\left(\sqrt{4-a} + \sqrt{5-a}\right)\left(5\sqrt{4-a} - 4\sqrt{5-a} + \sqrt{6-a}\right) = 0.$

Cleary the first term cannot be zero so the second must. Re-arranging such that

$5\sqrt{4-a} + \sqrt{6-a} = 4\sqrt{5-a}$

and squaring both sides and isolating the square root term gives

$10\sqrt{4-a}\sqrt{6-a} = 10a - 26$

and squaring each side again and isolating $a$ give

$a = \dfrac{431}{120} = 3.591\dot{6}$
 
Re: Find a

Jester said:
My solution
Moving everything to one side of the equal sign, the expression can be factored as

$\left(\sqrt{4-a} + \sqrt{5-a}\right)\left(5\sqrt{4-a} - 4\sqrt{5-a} + \sqrt{6-a}\right) = 0.$

Cleary the first term cannot be zero so the second must. Re-arranging such that

$5\sqrt{4-a} + \sqrt{6-a} = 4\sqrt{5-a}$

and squaring both sides and isolating the square root term gives

$10\sqrt{4-a}\sqrt{6-a} = 10a - 26$

and squaring each side again and isolating $a$ give

$a = \dfrac{431}{120} = 3.591\dot{6}$

Well done, Jester! My hat is off to you for thinking out such a nice way to factorize the given expression! (Clapping)
 
Re: Find a

anemone said:
$a$ is a real number that satisfies the equation $a-\sqrt{4-a}\sqrt{5-a}=\sqrt{5-a}\sqrt{6-a}+\sqrt{6-a}\sqrt{4-a}$.

Find $a$.

My solution:

I first let $m=(6-a)+(4-a)=10-2a=2(5-a)$, this gives

[TABLE="class: grid, width: 500"]
[TR]
[TD]$5-a=\dfrac{m}{2}$[/TD]
[TD]$4-a=\dfrac{m}{2}-1$[/TD]
[TD]$6-a=\dfrac{m}{2}+1$[/TD]
[/TR]
[/TABLE]

So the given equation becomes

$5-\dfrac{m}{2}-\sqrt{\dfrac{m}{2}-1}\sqrt{\dfrac{m}{2}}=\sqrt{ \dfrac{m}{2}}\sqrt{\dfrac{m}{2}+1}+\sqrt{\dfrac{m}{2}+1}\sqrt{\dfrac{m}{2}-1}$

$5-\dfrac{m}{2}=\sqrt{ \dfrac{m}{2}}\left(\sqrt{\dfrac{m}{2}+1}+\sqrt{ \dfrac{m}{2}-1} \right)+\sqrt{\dfrac{m}{2}+1}\sqrt{\dfrac{m}{2}-1}$

I then let $\sqrt{\dfrac{m}{2}}=k$ so I get

$5-k^2=k\left(\sqrt{k^2+1}+\sqrt{k^2-1} \right)+\sqrt{(k^2+1)(k^2-1)}$

Expanding and simplifying the equation and solving it for $k^2$ we get

$5-k^2-\sqrt{k^4-1}=k\left(\sqrt{k^2+1}+\sqrt{k^2-1} \right)$

$25-10k^2+k^4+k^4-1-2(5-k^2)\sqrt{k^4-1}=k^2\left(k^2+1+k^2-1+2\sqrt{k^2+1}\sqrt{k^2-1} \right)$

$25-10k^2+k^4+k^4-1-10\sqrt{k^4-1}+2k^2\sqrt{k^4-1}=k^2\left(2k^2+2\sqrt{k^4-1} \right)$

$25-10k^2+2k^4-1-10\sqrt{k^4-1}+2k^2\sqrt{k^4-1}=2k^4+2k^2\sqrt{k^4-1}$

$24-10k^2-10\sqrt{k^4-1}=0$

$k^2=\dfrac{169}{120}$

and therefore $\dfrac{m}{2}=k^2=\dfrac{169}{120}$ hence, $a=\dfrac{10-m}{2}=\dfrac{10-2(\dfrac{169}{120})}{2}=\dfrac{431}{120}$.
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K