Trouble calculating matrix norms using the formula

  • Thread starter Thread starter meemoe_uk
  • Start date Start date
  • Tags Tags
    Matrix
AI Thread Summary
The discussion centers on difficulties in calculating matrix norms, specifically the 2-norm, using the formula ||A|| = max ||Ax|| where ||x|| = 1. The user attempts to find the 2-norm of a matrix but arrives at an incorrect answer, indicating confusion in the calculation process. They successfully compute eigenvalues and eigenvectors but struggle with the subsequent norm calculation, particularly when not allowed to use the spectral radius formula. Another participant suggests a potential error in the matrix being analyzed, hinting that the correct matrix might yield the expected results. The main issue lies in accurately calculating the matrix norm after determining the eigen system.
meemoe_uk
Messages
124
Reaction score
0
Duh, I can`t calculate matrix norms using the formula...

||A|| = max || Ax || where || x || = 1

This is how I try to calculate them, what am I doing wrong?

e.g. Find norm 2 of A

A = 1 1
0 1

First find A's eigen system...
Solve characteristic polynomial...
( 1 - k ) ( 1 - k )
k = 1 - eigen value of A
Get eigen vector...
A - k I = 0
0 1 = 0
0 0 = 0

eigen vector = 1
0

As || Ax || is at a maximum when x is A's eigen vector, we can now calculate ||A||.
Ax = 1 1 * 1 = 1
= 0 1 0 = 0
Therefore
|| A || = || 1 || = 1
|| 0 ||

Actual answer = 1.618

Bah. I can do it for norm 1 and infinity, but not any number inbetween. I'm not allowed to use that traspose matrix ,spectral radius formula. What's the secret? Please help.

I can`t seem to display a matrix nicely on my post either. sos
 
Last edited:
Mathematics news on Phys.org
Hrm.

Are you sure you have the right matrix? Based on the correct answer, my guess is that it's supposed to be

Code:
A = /0 1\
    \1 1/
 
Hi Hurkyl,
The matrix is the one from Burden - Faires Numerical Analysis 4th Edition Ex Set 7.2 Q 1 b)
If I use the spectral radius formula I get the right answer.

Here' another eg. Q 1 d)

A =
2 1 1
2 3 2
1 1 2

Solve characteristic polynomial
- k^3 + 7k^2 - 11k + 5
( k - 1 ) ^2 ( k - 5 )
k = 1 , 5

Get eigenvectors
For k = 1
A - kI = 0 =
1 1 1
2 2 2
1 1 1

solution space vectors =
1
-1
0

1
0
-1

For k = 5
A - kI = 0 =
-3 1 1
2 -2 2
1 1 -3

solution space vector =
1
2
1

|| Ax || is at maximum when x is eigen vector corisponding to largest eigen value so k=5 and
x =
1
2
1
/ Sqr 6 , to nomalize || x || = 1

Calculate Ax

2 1 1 * 1
2 3 2 * 2
1 1 2 * 1 / Sqr 6

=
5
10
5 / Sqr 6

Get Norm...
= Sqr ((25 + 100 + 25) / 6)
= Sqr ( 150 / 6 )
= 5 My answer

Actual Answer = 5.2035

I get the eigen system correct, but it's the matrix norm calculation where I go wrong I think.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top