Find all the values of (-2+2i)^(1/3)

  • Thread starter Thread starter Jamin2112
  • Start date Start date
Jamin2112
Messages
973
Reaction score
12

Homework Statement



Find all the values of (-2+2i)1/3

Homework Equations



eib = cos(b) + i * sin(b)

The Attempt at a Solution





(-2+2i)1/3 = (2(-1+i))1/3 = 21/3 (√2)1/3 (eiπ(3/4 + 2m))1/3 = 21/2 (eπi)1/4 + 2m/3 = ... Where am I going with this? I don't even know.
 
Physics news on Phys.org
You need to use the definition:

u^{1/n}=|u|^{1/n} e^{i/n(\theta+2n\pi i)}

where \theta is the argument of u
 
Jamin2112 said:

Homework Statement



Find all the values of (-2+2i)1/3

Homework Equations



eib = cos(b) + i * sin(b)

The Attempt at a Solution





(-2+2i)1/3 = (2(-1+i))1/3 = 21/3 (√2)1/3 (eiπ(3/4 + 2m))1/3 = 21/2 (eπi)1/4 + 2m/3 = ... Where am I going with this? I don't even know.
Change it back to a+bi form using m=0,1,2 .
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top