MHB Find Analytic Expression for Integral with Approximations

AI Thread Summary
The discussion focuses on finding a closed-form or analytic expression for a specific integral involving exponential functions and constants. Participants are encouraged to share their insights on how to approach the problem, particularly in terms of techniques or methods that could simplify the integral. The integral includes parameters x, y, and z, which are constants independent of the variable r. The complexity of the integral suggests that advanced mathematical methods may be necessary for a solution. Engaging with the community could lead to collaborative problem-solving and potential breakthroughs in deriving the expression.
venkaiah
Messages
1
Reaction score
0
Find the closed form (or) analytic expression form for the following integral

$$
\hspace{0.3cm} \large {\int_{0} ^{\infty} \frac{\frac{1}{x^4} \hspace{0.1cm} e^{- \frac{r}{x^2}}\hspace{0.1cm}e^{- \frac{r}{z^2}} }{ \frac{1}{x^2} \hspace{0.1cm} e^{- \frac{r}{x^2}}+ \frac{1}{y^2} \hspace{0.1cm} e^{- \frac{r}{y^2}}}} dr \hspace{.2cm} ; \hspace{1cm} x>0,y>0,z>0 $$ where $ x $ ,$ y $ and $z $ are constants and independent of $ r $.
 
Mathematics news on Phys.org
Hi venkaiah and welcome to MHB! :D

Any thoughts on how to begin?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top