ILoveBaseball
- 30
- 0
find \frac{d^2y}{dx^2} as a function of t, for the given the parametric equations:
x = 2-4*cos(t)
y= 4+cos(t)^2
\frac{d^2y}{dx^2} = _______
dy/dt = -2*cos(t)*sin(t)
second derv. 2*sin(t)^2-2*cos(t)^2
dx/dt = 4*sin(t)
second derv. 4*cos(t)
\frac{d^2y}{dx^2} = \frac{2*sin(t)^2-2*cos(t)^2}{4*cos(t)}
what did i do wrong?
x = 2-4*cos(t)
y= 4+cos(t)^2
\frac{d^2y}{dx^2} = _______
dy/dt = -2*cos(t)*sin(t)
second derv. 2*sin(t)^2-2*cos(t)^2
dx/dt = 4*sin(t)
second derv. 4*cos(t)
\frac{d^2y}{dx^2} = \frac{2*sin(t)^2-2*cos(t)^2}{4*cos(t)}
what did i do wrong?