I Find Frequency of Block Oscillation Due to Shear Force

AI Thread Summary
The discussion focuses on determining the frequency of oscillation for a rectangular block subjected to shear forces, assuming no bending occurs. The user derives the relationship between shear force, acceleration, and displacement, ultimately leading to the conclusion that the block undergoes simple harmonic motion. The derived frequency formula is f = (1/2π)√(2G/ρH²), where G is the shear modulus, ρ is the density, and H is the height of the block. The user seeks validation of this approach and requests clarification on the symbols used in the equations. The analysis suggests a solid understanding of the mechanics involved in the oscillation due to shear forces.
person123
Messages
326
Reaction score
52
TL;DR Summary
I derived an equation for the frequency of a rectangular prism oscillating due to a shear restoring force, but I don't know if it's correct.
Hi. I'm trying to determine the frequency of an block (roughly a rectangular prism) when the oscillation is due to a shear restoring force. Here is a diagram:
House Diagram.png

In the derivation, ##\rho## is the density of the block,##G## is the shear modulus of the block, ##y## is the elevation of the element of the block, ##F## is the horizontal shear force, ##a_x## is the horizontal acceleration of the material element, and ##\Delta x## is the horizontal displacement of the material element.

I assume that the block does not undergo any bending (I think this is a good approximation if H is small). There is a shear force on the base of the block causing it oscillate. I look at a small part of the block and analyze the forces on it. ##\frac {\partial F}{ \partial y}## relates to the acceleration of the small mass:

$$\frac {\partial F}{\partial y}dy=dm a_x$$
$$\frac {\partial F}{\partial y}dy=\rho dy W L a_x$$
$$\frac {\partial F}{\partial y}=\rho W L a_x$$

Because:
$$\tau=G \Delta\theta$$
for small angles:
$$F_{bottom}=G \frac{\Delta x}{y}WL$$

The shear force must vary between this value and 0 at the top along the height of the block. ##\frac{\partial F}{\partial y}## must be proportional to the distance from the bottom (the higher up the element is, the more it is displaced, so the more it accelerates, and the relation is linear assuming SHM and no bending). This means the force profile must be the following (I'm skipping the steps but it's easy to confirm):

$$F=F_{bottom}(1-\frac{y^2}{H^2})$$

This means:
$$\frac{\partial F}{\partial y}=- \frac{2y G\Delta x WL}{y H^2}=-\frac{2G \Delta x WL}{H^2}$$

Plugging this into the previous equation:
$$\rho W L a_x=-\frac{2G \Delta x WL}{H^2}$$
$$a_x=-\frac{2G}{\rho H^2} \Delta x$$

This is simple harmonic motion, so the frequency would be:
$$f=\frac{1}{2\pi}\sqrt{\frac{2G}{\rho H^2}}$$

I'm interested in whether my approach is correct (I couldn't find an equation for this when searching online).
 
Last edited:
Physics news on Phys.org
Please define symbols.
 
  • Like
Likes person123
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...

Similar threads

Back
Top