- #1

oh20elyf

- 3

- 0

[tex]

f(x)=\frac{J_{0}(ax)J_{1}(bx) }{x+x^{4} }

\\

J_{0},{~}J_{1} : Bessel{~}functions{~}of{~}the{~}first{~}kind\\

a, b: constants

\\

F(x)=\int_{}^{} \! f(x) \, dx =?[/tex]

Who can help?

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter oh20elyf
- Start date

- #1

oh20elyf

- 3

- 0

[tex]

f(x)=\frac{J_{0}(ax)J_{1}(bx) }{x+x^{4} }

\\

J_{0},{~}J_{1} : Bessel{~}functions{~}of{~}the{~}first{~}kind\\

a, b: constants

\\

F(x)=\int_{}^{} \! f(x) \, dx =?[/tex]

Who can help?

- #2

RUber

Homework Helper

- 1,687

- 344

##J_0(0) = 0##, ##J_1(0) = 1##, So This function should be continuous around zero with a point discontinuity.

I would recommend using the residue formula for the roots of (1+ x^3) in the denominator.

Share:

- Last Post

- Replies
- 17

- Views
- 700

- Last Post

- Replies
- 1

- Views
- 544

- Replies
- 5

- Views
- 529

- Replies
- 3

- Views
- 730

- Replies
- 3

- Views
- 1K

- Last Post

- Replies
- 4

- Views
- 999

- Replies
- 3

- Views
- 929

- Last Post

- Replies
- 3

- Views
- 453

- Replies
- 16

- Views
- 639

MHB
Integrate by sub

- Last Post

- Replies
- 5

- Views
- 681