MHB Find Least Value of a,b,c Real Nums

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Value
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the least value of $\dfrac{(a^4+1)(b^4+1)(c^4+1)}{ab^2c}$ as $a,\,b,\,c$ range over the positive reals.
 
Mathematics news on Phys.org
My Solution:

Using $\bf{A.M\geq G.M}$ Seperately

$\displaystyle \frac{a^4+1}{a} = a^3+\frac{1}{a} = a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}$

So $\displaystyle a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\geq 4\sqrt[4]{a^3\cdot \frac{1}{3a}\cdot \frac{1}{3a}\cdot\frac{1}{3a}} = \frac{4}{\sqrt[4]{27}}.....(1)$

and equality hold when $\displaystyle a^3 = \frac{1}{3a} = \frac{1}{3a} = \frac{1}{3a},$ So $\displaystyle a = \frac{1}{\sqrt[4]{3}}>0$

Similarly $\displaystyle \frac{c^4+1}{c} = c^3+\frac{1}{c} = c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}$

So $\displaystyle c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}\geq 4\sqrt[4]{c^3\cdot \frac{1}{3c}\cdot \frac{1}{3c}\cdot\frac{1}{3c}} = \frac{4}{\sqrt[4]{27}}......(2)$

and equality hold when $\displaystyle c^3 = \frac{1}{3c} = \frac{1}{3c} = \frac{1}{3c},$ So $\displaystyle c = \frac{1}{\sqrt[4]{3}}>0$

Now for $\displaystyle \frac{b^4+1}{b^2} = b^2+\frac{1}{b^2}......(3)$

So $\displaystyle b^2+\frac{1}{b^2}\geq 2\sqrt{b^2\cdot \frac{1}{b^2}} = 2$

and equality hold when $\displaystyle b^2 = \frac{1}{b^2}\Rightarrow b = 1>0$

So Minimum value of $\displaystyle \frac{(a^4+1)(b^4+1)(c^4+1)}{ab^2c} = \frac{4}{\sqrt[4]{27}}\cdot 2 \cdot \frac{4}{\sqrt[4]{27}}=\frac{32}{3\sqrt{3}}$

Which is occur at $\displaystyle a = \frac{1}{\sqrt[4]{3}}\;,b = 1\;,c = \frac{1}{\sqrt[4]{3}}$
 
Last edited by a moderator:
jacks said:
My Solution:

Using $\bf{A.M\geq G.M}$ Seperately

$\displaystyle \frac{a^4+1}{a} = a^3+\frac{1}{a} = a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}$

So $\displaystyle a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\geq 4\sqrt[4]{a^3\cdot \frac{1}{3a}\cdot \frac{1}{3a}\cdot\frac{1}{3a}} = \frac{4}{\sqrt[4]{27}}.....(1)$

and equality hold when $\displaystyle a^3 = \frac{1}{3a} = \frac{1}{3a} = \frac{1}{3a},$ So $\displaystyle a = \frac{1}{\sqrt[4]{3}}>0$

Similarly $\displaystyle \frac{c^4+1}{c} = c^3+\frac{1}{c} = c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}$

So $\displaystyle c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}\geq 4\sqrt[4]{c^3\cdot \frac{1}{3c}\cdot \frac{1}{3c}\cdot\frac{1}{3c}} = \frac{4}{\sqrt[4]{27}}......(2)$

and equality hold when $\displaystyle c^3 = \frac{1}{3c} = \frac{1}{3c} = \frac{1}{3c},$ So $\displaystyle c = \frac{1}{\sqrt[4]{3}}>0$

Now for $\displaystyle \frac{b^4+1}{b^2} = b^2+\frac{1}{b^2}......(3)$

So $\displaystyle b^2+\frac{1}{b^2}\geq 2\sqrt{b^2\cdot \frac{1}{b^2}} = 2$

and equality hold when $\displaystyle b^2 = \frac{1}{b^2}\Rightarrow b = 1>0$

So Minimum value of $\displaystyle \frac{(a^4+1)(b^4+1)(c^4+1)}{ab^2c} = \frac{4}{\sqrt[4]{27}}\cdot 2 \cdot \frac{4}{\sqrt[4]{27}}=\frac{32}{3\sqrt{3}}$

Which is occur at $\displaystyle a = \frac{1}{\sqrt[4]{3}}\;,b = 1\;,c = \frac{1}{\sqrt[4]{3}}$

Well done, jacks! Thanks for participating!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
3
Views
1K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
1
Views
861
Replies
1
Views
1K
Replies
1
Views
1K
Replies
3
Views
929
Replies
1
Views
1K
Back
Top