MHB Find Least Value of a,b,c Real Nums

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Value
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the least value of $\dfrac{(a^4+1)(b^4+1)(c^4+1)}{ab^2c}$ as $a,\,b,\,c$ range over the positive reals.
 
Mathematics news on Phys.org
My Solution:

Using $\bf{A.M\geq G.M}$ Seperately

$\displaystyle \frac{a^4+1}{a} = a^3+\frac{1}{a} = a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}$

So $\displaystyle a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\geq 4\sqrt[4]{a^3\cdot \frac{1}{3a}\cdot \frac{1}{3a}\cdot\frac{1}{3a}} = \frac{4}{\sqrt[4]{27}}.....(1)$

and equality hold when $\displaystyle a^3 = \frac{1}{3a} = \frac{1}{3a} = \frac{1}{3a},$ So $\displaystyle a = \frac{1}{\sqrt[4]{3}}>0$

Similarly $\displaystyle \frac{c^4+1}{c} = c^3+\frac{1}{c} = c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}$

So $\displaystyle c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}\geq 4\sqrt[4]{c^3\cdot \frac{1}{3c}\cdot \frac{1}{3c}\cdot\frac{1}{3c}} = \frac{4}{\sqrt[4]{27}}......(2)$

and equality hold when $\displaystyle c^3 = \frac{1}{3c} = \frac{1}{3c} = \frac{1}{3c},$ So $\displaystyle c = \frac{1}{\sqrt[4]{3}}>0$

Now for $\displaystyle \frac{b^4+1}{b^2} = b^2+\frac{1}{b^2}......(3)$

So $\displaystyle b^2+\frac{1}{b^2}\geq 2\sqrt{b^2\cdot \frac{1}{b^2}} = 2$

and equality hold when $\displaystyle b^2 = \frac{1}{b^2}\Rightarrow b = 1>0$

So Minimum value of $\displaystyle \frac{(a^4+1)(b^4+1)(c^4+1)}{ab^2c} = \frac{4}{\sqrt[4]{27}}\cdot 2 \cdot \frac{4}{\sqrt[4]{27}}=\frac{32}{3\sqrt{3}}$

Which is occur at $\displaystyle a = \frac{1}{\sqrt[4]{3}}\;,b = 1\;,c = \frac{1}{\sqrt[4]{3}}$
 
Last edited by a moderator:
jacks said:
My Solution:

Using $\bf{A.M\geq G.M}$ Seperately

$\displaystyle \frac{a^4+1}{a} = a^3+\frac{1}{a} = a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}$

So $\displaystyle a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\geq 4\sqrt[4]{a^3\cdot \frac{1}{3a}\cdot \frac{1}{3a}\cdot\frac{1}{3a}} = \frac{4}{\sqrt[4]{27}}.....(1)$

and equality hold when $\displaystyle a^3 = \frac{1}{3a} = \frac{1}{3a} = \frac{1}{3a},$ So $\displaystyle a = \frac{1}{\sqrt[4]{3}}>0$

Similarly $\displaystyle \frac{c^4+1}{c} = c^3+\frac{1}{c} = c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}$

So $\displaystyle c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}\geq 4\sqrt[4]{c^3\cdot \frac{1}{3c}\cdot \frac{1}{3c}\cdot\frac{1}{3c}} = \frac{4}{\sqrt[4]{27}}......(2)$

and equality hold when $\displaystyle c^3 = \frac{1}{3c} = \frac{1}{3c} = \frac{1}{3c},$ So $\displaystyle c = \frac{1}{\sqrt[4]{3}}>0$

Now for $\displaystyle \frac{b^4+1}{b^2} = b^2+\frac{1}{b^2}......(3)$

So $\displaystyle b^2+\frac{1}{b^2}\geq 2\sqrt{b^2\cdot \frac{1}{b^2}} = 2$

and equality hold when $\displaystyle b^2 = \frac{1}{b^2}\Rightarrow b = 1>0$

So Minimum value of $\displaystyle \frac{(a^4+1)(b^4+1)(c^4+1)}{ab^2c} = \frac{4}{\sqrt[4]{27}}\cdot 2 \cdot \frac{4}{\sqrt[4]{27}}=\frac{32}{3\sqrt{3}}$

Which is occur at $\displaystyle a = \frac{1}{\sqrt[4]{3}}\;,b = 1\;,c = \frac{1}{\sqrt[4]{3}}$

Well done, jacks! Thanks for participating!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
3
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
847
Replies
1
Views
1K
Replies
1
Views
1K
Replies
3
Views
909
Replies
1
Views
1K
Back
Top