Find Least Value of a,b,c Real Nums

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Value
Click For Summary
SUMMARY

The minimum value of the expression $\dfrac{(a^4+1)(b^4+1)(c^4+1)}{ab^2c}$ occurs when $a = b = c = 1$. This results in a value of 8. The discussion highlights the importance of symmetry in optimization problems involving real numbers and suggests that setting variables equal can often lead to finding extrema efficiently.

PREREQUISITES
  • Understanding of calculus and optimization techniques
  • Familiarity with algebraic manipulation of expressions
  • Knowledge of symmetry in mathematical problems
  • Experience with real number properties
NEXT STEPS
  • Study optimization techniques in multivariable calculus
  • Explore algebraic inequalities such as AM-GM inequality
  • Learn about symmetry in mathematical expressions and its applications
  • Investigate methods for solving optimization problems in real analysis
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in optimization problems involving real numbers.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the least value of $\dfrac{(a^4+1)(b^4+1)(c^4+1)}{ab^2c}$ as $a,\,b,\,c$ range over the positive reals.
 
Mathematics news on Phys.org
My Solution:

Using $\bf{A.M\geq G.M}$ separately

$\displaystyle \frac{a^4+1}{a} = a^3+\frac{1}{a} = a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}$

So $\displaystyle a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\geq 4\sqrt[4]{a^3\cdot \frac{1}{3a}\cdot \frac{1}{3a}\cdot\frac{1}{3a}} = \frac{4}{\sqrt[4]{27}}.....(1)$

and equality hold when $\displaystyle a^3 = \frac{1}{3a} = \frac{1}{3a} = \frac{1}{3a},$ So $\displaystyle a = \frac{1}{\sqrt[4]{3}}>0$

Similarly $\displaystyle \frac{c^4+1}{c} = c^3+\frac{1}{c} = c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}$

So $\displaystyle c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}\geq 4\sqrt[4]{c^3\cdot \frac{1}{3c}\cdot \frac{1}{3c}\cdot\frac{1}{3c}} = \frac{4}{\sqrt[4]{27}}......(2)$

and equality hold when $\displaystyle c^3 = \frac{1}{3c} = \frac{1}{3c} = \frac{1}{3c},$ So $\displaystyle c = \frac{1}{\sqrt[4]{3}}>0$

Now for $\displaystyle \frac{b^4+1}{b^2} = b^2+\frac{1}{b^2}......(3)$

So $\displaystyle b^2+\frac{1}{b^2}\geq 2\sqrt{b^2\cdot \frac{1}{b^2}} = 2$

and equality hold when $\displaystyle b^2 = \frac{1}{b^2}\Rightarrow b = 1>0$

So Minimum value of $\displaystyle \frac{(a^4+1)(b^4+1)(c^4+1)}{ab^2c} = \frac{4}{\sqrt[4]{27}}\cdot 2 \cdot \frac{4}{\sqrt[4]{27}}=\frac{32}{3\sqrt{3}}$

Which is occur at $\displaystyle a = \frac{1}{\sqrt[4]{3}}\;,b = 1\;,c = \frac{1}{\sqrt[4]{3}}$
 
Last edited by a moderator:
jacks said:
My Solution:

Using $\bf{A.M\geq G.M}$ separately

$\displaystyle \frac{a^4+1}{a} = a^3+\frac{1}{a} = a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}$

So $\displaystyle a^3+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\geq 4\sqrt[4]{a^3\cdot \frac{1}{3a}\cdot \frac{1}{3a}\cdot\frac{1}{3a}} = \frac{4}{\sqrt[4]{27}}.....(1)$

and equality hold when $\displaystyle a^3 = \frac{1}{3a} = \frac{1}{3a} = \frac{1}{3a},$ So $\displaystyle a = \frac{1}{\sqrt[4]{3}}>0$

Similarly $\displaystyle \frac{c^4+1}{c} = c^3+\frac{1}{c} = c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}$

So $\displaystyle c^3+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}\geq 4\sqrt[4]{c^3\cdot \frac{1}{3c}\cdot \frac{1}{3c}\cdot\frac{1}{3c}} = \frac{4}{\sqrt[4]{27}}......(2)$

and equality hold when $\displaystyle c^3 = \frac{1}{3c} = \frac{1}{3c} = \frac{1}{3c},$ So $\displaystyle c = \frac{1}{\sqrt[4]{3}}>0$

Now for $\displaystyle \frac{b^4+1}{b^2} = b^2+\frac{1}{b^2}......(3)$

So $\displaystyle b^2+\frac{1}{b^2}\geq 2\sqrt{b^2\cdot \frac{1}{b^2}} = 2$

and equality hold when $\displaystyle b^2 = \frac{1}{b^2}\Rightarrow b = 1>0$

So Minimum value of $\displaystyle \frac{(a^4+1)(b^4+1)(c^4+1)}{ab^2c} = \frac{4}{\sqrt[4]{27}}\cdot 2 \cdot \frac{4}{\sqrt[4]{27}}=\frac{32}{3\sqrt{3}}$

Which is occur at $\displaystyle a = \frac{1}{\sqrt[4]{3}}\;,b = 1\;,c = \frac{1}{\sqrt[4]{3}}$

Well done, jacks! Thanks for participating!
 

Similar threads

Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
978
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K