MHB Find Left Cosets of Subgroup in $\mathbb{Z}_{15}, D_4$

  • Thread starter Thread starter NoName3
  • Start date Start date
  • Tags Tags
    Cosets Subgroup
NoName3
Messages
24
Reaction score
0
How do I find the left cosets of:

$(a)$ $\left\{ [0], [5], [10] \right\} \le \mathbb{Z}_{15}$ ($\mathbb{Z}_n$ is additive group modulo $n$).

$(b)$ $\left\{e, y, y^2, y^3 \right\} \le D_4$ where $y$ denotes rotation of a square.

The not equal to here denotes subgroup. The trouble I've with the first one is that I'm finding too many left cosets. The definition of left cosets is $\left\{gh: g \in G, h \in H\right\}$. In this case if I let $h = 0$ and vary $g$ through $0$ to $14$ then my set contains fifteen members. Well, that can't right surely? I think there's a theorem that says my subgroup can only have five left cosets (not too sure if that's right).
 
Last edited:
Physics news on Phys.org
NoName said:
How do I find the left cosets of:

$(a)$ $\left\{ [0], [5], [10] \right\} \le \mathbb{Z}_{15}$ ($\mathbb{Z}_n$ is additive group modulo $n$).

$(a)$ $\left\{e, y, y^2, y^3 \right\} \le D_4$ where $y$ denotes rotation of a square.

The not equal to here denotes subgroup. The trouble I've with the first one is that I'm finding too many left cosets. The definition of left cosets is $\left\{gh: g \in G, h \in H\right\}$. In this case if I let $h = 0$ and vary $g$ through $0$ to $14$ then my set contains fifteen members. Well, that can't right surely? I think there's a theorem that says my subgroup can only have five left cosets (not too sure if that's right).
In $(a)$, the group operation in $\mathbb{Z}_n$ is additive, so it is usual to use the notation $g+H$ rather than $gH$ for the cosets. If for example the group is $\mathbb{Z}_{15}$, the subgroup is $H = \left\{ [0], [5], [10] \right\}$ and we take $g$ to be the element $[1]$, then the coset $[1] + H$ consists of the elements $[1]+[0]$, $[1]+[5]$ and $[1]+[10].$ That gives you the coset $\left\{ [1], [6], [11] \right\}.$ If you carry on like that, you will find that there are indeed five cosets (each consisting of three elements).
 
Opalg said:
In $(a)$, the group operation in $\mathbb{Z}_n$ is additive, so it is usual to use the notation $g+H$ rather than $gH$ for the cosets. If for example the group is $\mathbb{Z}_{15}$, the subgroup is $H = \left\{ [0], [5], [10] \right\}$ and we take $g$ to be the element $[1]$, then the coset $[1] + H$ consists of the elements $[1]+[0]$, $[1]+[5]$ and $[1]+[10].$ That gives you the coset $\left\{ [1], [6], [11] \right\}.$ If you carry on like that, you will find that there are indeed five cosets (each consisting of three elements).
Thank you. I was counting the elements of the cosets, not cosets. I have now found that:

$g+H = \left\{ \left\{[0], [5], [10]\right\}, \left\{[1], [6], [11]\right\}, \left\{[2], [7], [12]\right\}, \left\{[3], [8], [13]\right\}, \left\{[4], [9], [14]\right\} \right\}.$

Regarding $(2)$ is it possible to define $D_4$ the way $D_6$ is defined in here i.e. $D_6 = \left\{x^i, yx^i: 0 \le i \le 5 \right\}$?
 
NoName said:
Thank you. I was counting the elements of the cosets, not cosets. I have now found that:

$g+H = \left\{ \left\{[0], [5], [10]\right\}, \left\{[1], [6], [11]\right\}, \left\{[2], [7], [12]\right\}, \left\{[3], [8], [13]\right\}, \left\{[4], [9], [14]\right\} \right\}.$
Correct. (Yes)

NoName said:
Regarding $(2)$ is it possible to define $D_4$ the way $D_6$ is defined in here i.e. $D_6 = \left\{x^i, yx^i: 0 \le i \le 5 \right\}$?
Yes, except that there is a clash of notation. The $y$ in your $D_4$ corresponds to the $x$ in Wolfram's $D_6$. So your $D_4$ should consist of elements $e,\,y,\,y^2,\,y^3,\,z,\,zy,\,zy^2,\,zy^3$, satisfying the relation $yz = zy^3.$

If you are viewing the group as symmetries of a square then $y$ represents a rotation of $90^\circ$ and $z$ represents reflection in a line joining the midpoints of two opposite edges.
 
Opalg said:
Correct. (Yes)Yes, except that there is a clash of notation. The $y$ in your $D_4$ corresponds to the $x$ in Wolfram's $D_6$. So your $D_4$ should consist of elements $e,\,y,\,y^2,\,y^3,\,z,\,zy,\,zy^2,\,zy^3$, satisfying the relation $yz = zy^3.$

If you are viewing the group as symmetries of a square then $y$ represents a rotation of $90^\circ$ and $z$ represents reflection in a line joining the midpoints of two opposite edges.
Thanks again!

I think in finding $gH$ letting $g = e$ we find the first coset $\left\{e, y, y^2, y^3\right\}$ and letting $g = z$ we get $\left\{z, zy, zy^2, zy^3\right\} =\left\{z, y^3z, y^2z, yz\right\}. $

Lagrange's theorem says that the number of left cosets is exactly $|G|/|H|$ which is $8/4 = 2$ here so there are none more to find.
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
1
Views
400
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
721
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
1
Views
3K
Replies
6
Views
7K
  • · Replies 3 ·
Replies
3
Views
3K