MHB Find Left Cosets of Subgroup in $\mathbb{Z}_{15}, D_4$

  • Thread starter Thread starter NoName3
  • Start date Start date
  • Tags Tags
    Cosets Subgroup
NoName3
Messages
24
Reaction score
0
How do I find the left cosets of:

$(a)$ $\left\{ [0], [5], [10] \right\} \le \mathbb{Z}_{15}$ ($\mathbb{Z}_n$ is additive group modulo $n$).

$(b)$ $\left\{e, y, y^2, y^3 \right\} \le D_4$ where $y$ denotes rotation of a square.

The not equal to here denotes subgroup. The trouble I've with the first one is that I'm finding too many left cosets. The definition of left cosets is $\left\{gh: g \in G, h \in H\right\}$. In this case if I let $h = 0$ and vary $g$ through $0$ to $14$ then my set contains fifteen members. Well, that can't right surely? I think there's a theorem that says my subgroup can only have five left cosets (not too sure if that's right).
 
Last edited:
Physics news on Phys.org
NoName said:
How do I find the left cosets of:

$(a)$ $\left\{ [0], [5], [10] \right\} \le \mathbb{Z}_{15}$ ($\mathbb{Z}_n$ is additive group modulo $n$).

$(a)$ $\left\{e, y, y^2, y^3 \right\} \le D_4$ where $y$ denotes rotation of a square.

The not equal to here denotes subgroup. The trouble I've with the first one is that I'm finding too many left cosets. The definition of left cosets is $\left\{gh: g \in G, h \in H\right\}$. In this case if I let $h = 0$ and vary $g$ through $0$ to $14$ then my set contains fifteen members. Well, that can't right surely? I think there's a theorem that says my subgroup can only have five left cosets (not too sure if that's right).
In $(a)$, the group operation in $\mathbb{Z}_n$ is additive, so it is usual to use the notation $g+H$ rather than $gH$ for the cosets. If for example the group is $\mathbb{Z}_{15}$, the subgroup is $H = \left\{ [0], [5], [10] \right\}$ and we take $g$ to be the element $[1]$, then the coset $[1] + H$ consists of the elements $[1]+[0]$, $[1]+[5]$ and $[1]+[10].$ That gives you the coset $\left\{ [1], [6], [11] \right\}.$ If you carry on like that, you will find that there are indeed five cosets (each consisting of three elements).
 
Opalg said:
In $(a)$, the group operation in $\mathbb{Z}_n$ is additive, so it is usual to use the notation $g+H$ rather than $gH$ for the cosets. If for example the group is $\mathbb{Z}_{15}$, the subgroup is $H = \left\{ [0], [5], [10] \right\}$ and we take $g$ to be the element $[1]$, then the coset $[1] + H$ consists of the elements $[1]+[0]$, $[1]+[5]$ and $[1]+[10].$ That gives you the coset $\left\{ [1], [6], [11] \right\}.$ If you carry on like that, you will find that there are indeed five cosets (each consisting of three elements).
Thank you. I was counting the elements of the cosets, not cosets. I have now found that:

$g+H = \left\{ \left\{[0], [5], [10]\right\}, \left\{[1], [6], [11]\right\}, \left\{[2], [7], [12]\right\}, \left\{[3], [8], [13]\right\}, \left\{[4], [9], [14]\right\} \right\}.$

Regarding $(2)$ is it possible to define $D_4$ the way $D_6$ is defined in here i.e. $D_6 = \left\{x^i, yx^i: 0 \le i \le 5 \right\}$?
 
NoName said:
Thank you. I was counting the elements of the cosets, not cosets. I have now found that:

$g+H = \left\{ \left\{[0], [5], [10]\right\}, \left\{[1], [6], [11]\right\}, \left\{[2], [7], [12]\right\}, \left\{[3], [8], [13]\right\}, \left\{[4], [9], [14]\right\} \right\}.$
Correct. (Yes)

NoName said:
Regarding $(2)$ is it possible to define $D_4$ the way $D_6$ is defined in here i.e. $D_6 = \left\{x^i, yx^i: 0 \le i \le 5 \right\}$?
Yes, except that there is a clash of notation. The $y$ in your $D_4$ corresponds to the $x$ in Wolfram's $D_6$. So your $D_4$ should consist of elements $e,\,y,\,y^2,\,y^3,\,z,\,zy,\,zy^2,\,zy^3$, satisfying the relation $yz = zy^3.$

If you are viewing the group as symmetries of a square then $y$ represents a rotation of $90^\circ$ and $z$ represents reflection in a line joining the midpoints of two opposite edges.
 
Opalg said:
Correct. (Yes)Yes, except that there is a clash of notation. The $y$ in your $D_4$ corresponds to the $x$ in Wolfram's $D_6$. So your $D_4$ should consist of elements $e,\,y,\,y^2,\,y^3,\,z,\,zy,\,zy^2,\,zy^3$, satisfying the relation $yz = zy^3.$

If you are viewing the group as symmetries of a square then $y$ represents a rotation of $90^\circ$ and $z$ represents reflection in a line joining the midpoints of two opposite edges.
Thanks again!

I think in finding $gH$ letting $g = e$ we find the first coset $\left\{e, y, y^2, y^3\right\}$ and letting $g = z$ we get $\left\{z, zy, zy^2, zy^3\right\} =\left\{z, y^3z, y^2z, yz\right\}. $

Lagrange's theorem says that the number of left cosets is exactly $|G|/|H|$ which is $8/4 = 2$ here so there are none more to find.
 
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top