Find Max Speed of 3.4g Mass in Oscillatory Motion: Energy Conservation

AI Thread Summary
To find the maximum speed of a 3.4 g mass in oscillatory motion, energy conservation principles can be applied, but the correct equations must be used. The initial approach of using amplitude divided by time was incorrect. Instead, the relationship between potential energy and kinetic energy should be utilized, specifically using the equation mgh = 1/2 mv^2, with h replaced by the displacement function x. If calculus is applicable, the velocity can be determined as the derivative of the displacement function x(t). For non-calculus approaches, reference materials should provide the necessary equations for displacement, velocity, and acceleration of harmonic oscillators.
map7s
Messages
145
Reaction score
0
There is a displacement versus time graph of a 3.4 g mass on a spring that is in oscillatory motion. A=0.5 and the wavelength for one period is 3 s while the total time shown on the graph is 7 s. I need to find out the maximum speed of this mass.

At first I thought that it would easily be the amplitude divided by the time at that highest amplitude, but obviously that was wrong. I then decided to try energy conservation, which I think is right, but I think that I am not using the correct equation. I've been trying to do some form of mgh=1/2 mv^2 and solving for v. I changed h to x and I knew that x=Acos((2pi/T)t) so I put that in for h and I tried to solve for v. I plugged in my answer and it was wrong, so I'm pretty sure that I just didn't use a correct form of this equation. How can I get a more appropriate form of this equation to use (if it is indeed the correct method) ?
 
Physics news on Phys.org
If this is a calculus based course, you know the velocity is the derivative of the displacement. If you can write x(t) you can find v(t). If it is not calculus based, almost surey your text gives you the equations for displacement, velocity, and acceleration of a harmonic oscillator as a function of time. From the graph you can find the things you need to use those equations.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top