Find Momentum Operators for 1s Electron in Hydrogen Atom

leenaa
Messages
8
Reaction score
0
Find < px >,< p > and < p2 > for the 1s electron ofa hydrogen atom.

i am tried the solution but momentum operators Differential for x or y or z and the wave equation depends on the r !
 
Physics news on Phys.org
You need to use the transformation to spherical coordinates and the chain rule to compute the derivatives. Also, it's very likely that your textbook discusses the transformation of derivatives in Cartesian coordinates to derivatives in spherical coordinates, so you might find some useful formulas already derived for you.
 
Thank you very much

http://img104.herosh.com/2010/11/18/211847127.jpg"


But the show of the integral of Sec[\[Theta]] does not converge on {0,2 \[Pi]}
Is this true!
 
Last edited by a moderator:
You can't just determine \partial r/\partial x by considering dx alone, since dr appears in the dy and dz equations as well. You can however compute

\frac{\partial r}{\partial x} = \frac{\partial }{\partial x} \sqrt{x^2 + y^2 + z^2} = \frac{x}{r}.

Therefore

\frac{\partial}{\partial x} = \sin\theta \cos \phi \frac{\partial}{\partial r} + \text{angular derivs}.
 
Thank you very much
Clearer idea
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top