Find Point c that satisfies the Mean Value Theorem

Schaus
Messages
118
Reaction score
5

Homework Statement


Find the point "c" that satisfies the Mean Value Theorem For Derivatives for the function
## f(x) = \frac {x-1} {x+1}## on the interval [4,5].
Answer - c = 4.48

Homework Equations


##x = \frac {-b \pm \sqrt{b^2 -4ac}} {2a}##
##f'(c) = \frac { f(b) - f(a)} {b-a}##

The Attempt at a Solution


I found the derivative
##f'(x) = \frac {2} {(x+1)^2}##
a) ## f(4) = \frac {4-1} {4+1} = \frac {3} {5}##
b) ## f(5) = \frac {5-1} {5+1} = \frac {2} {3}##
Substituting in my values
## \frac {2} {(x+1)^2} = \frac { \frac {2} {3} - \frac {3} {5}} {5-4}##
## \frac {2} {(x+1)^2} = \frac {1} {15}##
## 30 = c^2 +2c +1##
## 0 = c^2 +2c -29##
##x = \frac {-2 \pm \sqrt{2^2 -(4)(1)(-29)}} {2(1)}##
Which gives me 3.475 and -7.475. I'm not sure where I went wrong, any help would be greatly appreciated. Neither one of there are in my interval and my solution says it needs to be 4.48.
 
Physics news on Phys.org
look the equation:
$$x = \frac {-2 \pm \sqrt{2^2 -(4)(1)(-29)}} {2(1)}$$
and solve it carefully
 
I swear I put that in my calculator a few times but this last time it worked... Thanks a lot anyways :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top