MHB Find Polynomial Q(x): Remainder -1 & 1

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Polynomial
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine a real polynomial $Q(x)$ of degree at most 5 which leaves remainders $-1$ and 1 upon division by $(x-1)^3$ and $(x+1)^3$ respectively.
 
Mathematics news on Phys.org
This is really straightforward from Chinese reminder theorem over $\Bbb Q[x]$. We have the congruences

$$P(x) = 1 \mod (x + 1)^3$$
$$P(x) = -1 \mod (x-1)^3$$

Note that $(x-1)^3$ and $(x+1)^3$ are relatively coprime, thus from Bezout's lemma it follows that there exists polynomials $a(x)$ and $b(x)$ such that

$$a(x)(x-1)^3 + b(x)(x+1)^3 = 1$$

Considering modulo $(x+1)^3$ and modulo $(x-1)^3$ respectively, we get that $a(x)$ is the inverse of $(x-1)^3$ modulo $(x+1)^3$ and $b(x)$ is of $(x+1)^3$ modulo $(x-1)^3$. The inverses produced by Euclidean algorithms are $-3/16x^2 - 9/16x - 1/2$ and $3/16x^2 - 9/16x + 1/2$, respectively, as verified below :

$$\left(\frac{-3}{16}x^2 - \frac9{16}x - \frac12\right)(x-1)^3 = -\frac3{16}x^5 + \frac{5}{8}x^3 - \frac{15}{16}x + \frac12 = 1 \mod (x+1)^3 $$

$$\left(\frac{3}{16}x^2 - \frac9{16}x + \frac12\right)(x+1)^3 = \frac3{16}x^5 - \frac5{8}x^3 + \frac{15}{16}x + \frac12 = 1 \mod (x-1)^3$$

Now applying Chinese remainder theorem gives

$$P(x) = a(x)(x-1)^3 + (-1)\cdot b(x)(x+1)^3 = -\frac{3}{8}x^5 + \frac{5}{4}x^3 - \frac{15}{8}x$$

This is our desired polynomial.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top