MHB Find Polynomial Q(x): Remainder -1 & 1

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Polynomial
Click For Summary
To find a real polynomial Q(x) of degree at most 5 that leaves remainders of -1 and 1 when divided by (x-1)^3 and (x+1)^3, respectively, one must consider the polynomial's form and the conditions imposed by the remainders. The polynomial can be expressed as Q(x) = A(x-1)^3 + B(x+1)^3 + C, where A and B are constants determined by the remainder conditions. By substituting x = 1 and x = -1 into the polynomial, the values of A and B can be calculated to satisfy the remainder requirements. The final polynomial must be verified to ensure it meets the degree constraint and the specified remainders. Ultimately, the solution involves balancing the polynomial's structure with the given conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine a real polynomial $Q(x)$ of degree at most 5 which leaves remainders $-1$ and 1 upon division by $(x-1)^3$ and $(x+1)^3$ respectively.
 
Mathematics news on Phys.org
This is really straightforward from Chinese reminder theorem over $\Bbb Q[x]$. We have the congruences

$$P(x) = 1 \mod (x + 1)^3$$
$$P(x) = -1 \mod (x-1)^3$$

Note that $(x-1)^3$ and $(x+1)^3$ are relatively coprime, thus from Bezout's lemma it follows that there exists polynomials $a(x)$ and $b(x)$ such that

$$a(x)(x-1)^3 + b(x)(x+1)^3 = 1$$

Considering modulo $(x+1)^3$ and modulo $(x-1)^3$ respectively, we get that $a(x)$ is the inverse of $(x-1)^3$ modulo $(x+1)^3$ and $b(x)$ is of $(x+1)^3$ modulo $(x-1)^3$. The inverses produced by Euclidean algorithms are $-3/16x^2 - 9/16x - 1/2$ and $3/16x^2 - 9/16x + 1/2$, respectively, as verified below :

$$\left(\frac{-3}{16}x^2 - \frac9{16}x - \frac12\right)(x-1)^3 = -\frac3{16}x^5 + \frac{5}{8}x^3 - \frac{15}{16}x + \frac12 = 1 \mod (x+1)^3 $$

$$\left(\frac{3}{16}x^2 - \frac9{16}x + \frac12\right)(x+1)^3 = \frac3{16}x^5 - \frac5{8}x^3 + \frac{15}{16}x + \frac12 = 1 \mod (x-1)^3$$

Now applying Chinese remainder theorem gives

$$P(x) = a(x)(x-1)^3 + (-1)\cdot b(x)(x+1)^3 = -\frac{3}{8}x^5 + \frac{5}{4}x^3 - \frac{15}{8}x$$

This is our desired polynomial.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K