MHB Find Side AB of Triangle ABC Given M, N, and C

  • Thread starter Thread starter Wilmer
  • Start date Start date
  • Tags Tags
    Triangle
AI Thread Summary
To find side AB of triangle ABC given points M, N, and C, the initial assumption of triangle similarity is incorrect, complicating the solution. The sine rule is applied in triangles BNC and BMA, yielding four equations to solve for the unknowns. After eliminating variables, the relation between angles leads to the conclusion that side AB measures 22.5. An alternative approach using coordinate geometry simplifies the problem by establishing a right triangle relationship. The discussion highlights the complexity of the problem while offering different methods to reach the solution.
Wilmer
Messages
303
Reaction score
0
Code:
                     B
 

                              15

 
A     9     M        11        N   5   C
Triangle ABC, BC = 15, AC = 25.
M and N on AC, such that AM = 9, MN = 11 and CN = 5.
Angle ABM = angle CBN.
Calculate side AB.
 
Mathematics news on Phys.org
It seems as simple as x/9 = 15/5, or am I missing something?
 
pickslides said:
It seems as simple as x/9 = 15/5, or am I missing something?
No; those 2 triangles are not similar...and solution NOT simple: guaranteed!
 
pickslides said:
It seems as simple as x/9 = 15/5, or am I missing something?
Are you claiming that triangles ABM and NBC are similar? Also, it is strange that the fact MN = 11 is not used.
 
View attachment 161

From the sine rule in triangle BNC, $\dfrac{\sin\theta}5 = \dfrac{\sin(\theta+\gamma)}{15}$.

From the sine rule in triangle BMA, $\dfrac{\sin\theta}9 = \dfrac{\sin(\theta+\alpha)}x$.

From the sine rule in triangle ABC, $\dfrac{\sin\alpha}{15} = \dfrac{\sin\gamma}x = \dfrac{\sin(\alpha+\gamma)}{25}$.

That gives four equations for the four unknowns $x$, $\theta$, $\alpha$, $\gamma$. So all you have to do is to solve the equations to find $x$.

In practice, I struggled to do that, but eventually I managed to eliminate $x$ and $\theta$ from the equations and ended with the relation $\sin\alpha = \tfrac23\sin\gamma.$ From there, it was easy to conclude that $\boxed{x = 22.5}.$ (Also, $\cos\alpha = \tfrac{29}{36}$, $\cos\gamma = \tfrac{11}{24}$ and $\tan\theta = \tfrac{\sqrt{455}}{61}.$)
 

Attachments

  • trig.png
    trig.png
    3.1 KB · Views: 119
Yep. There is a much easier solution using: A(0,0), C(25,0), B(x,y).
G on AC such that BG perpendicular to AC: AG = x, BG = y (of course).
Let u = angleABM = angleCBN.

TriangleABM: TAN(u) = [y / (x-9) - y/x] / [1 + (y / (x-9))(y/x)]
Do similarly with triangleBCN.
Use above equality and, along with Pythagoras' help with rights ABG and CBG, solve.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top