MHB Find Side AB of Triangle ABC Given M, N, and C

  • Thread starter Thread starter Wilmer
  • Start date Start date
  • Tags Tags
    Triangle
Wilmer
Messages
303
Reaction score
0
Code:
                     B
 

                              15

 
A     9     M        11        N   5   C
Triangle ABC, BC = 15, AC = 25.
M and N on AC, such that AM = 9, MN = 11 and CN = 5.
Angle ABM = angle CBN.
Calculate side AB.
 
Mathematics news on Phys.org
It seems as simple as x/9 = 15/5, or am I missing something?
 
pickslides said:
It seems as simple as x/9 = 15/5, or am I missing something?
No; those 2 triangles are not similar...and solution NOT simple: guaranteed!
 
pickslides said:
It seems as simple as x/9 = 15/5, or am I missing something?
Are you claiming that triangles ABM and NBC are similar? Also, it is strange that the fact MN = 11 is not used.
 
View attachment 161

From the sine rule in triangle BNC, $\dfrac{\sin\theta}5 = \dfrac{\sin(\theta+\gamma)}{15}$.

From the sine rule in triangle BMA, $\dfrac{\sin\theta}9 = \dfrac{\sin(\theta+\alpha)}x$.

From the sine rule in triangle ABC, $\dfrac{\sin\alpha}{15} = \dfrac{\sin\gamma}x = \dfrac{\sin(\alpha+\gamma)}{25}$.

That gives four equations for the four unknowns $x$, $\theta$, $\alpha$, $\gamma$. So all you have to do is to solve the equations to find $x$.

In practice, I struggled to do that, but eventually I managed to eliminate $x$ and $\theta$ from the equations and ended with the relation $\sin\alpha = \tfrac23\sin\gamma.$ From there, it was easy to conclude that $\boxed{x = 22.5}.$ (Also, $\cos\alpha = \tfrac{29}{36}$, $\cos\gamma = \tfrac{11}{24}$ and $\tan\theta = \tfrac{\sqrt{455}}{61}.$)
 

Attachments

  • trig.png
    trig.png
    3.1 KB · Views: 115
Yep. There is a much easier solution using: A(0,0), C(25,0), B(x,y).
G on AC such that BG perpendicular to AC: AG = x, BG = y (of course).
Let u = angleABM = angleCBN.

TriangleABM: TAN(u) = [y / (x-9) - y/x] / [1 + (y / (x-9))(y/x)]
Do similarly with triangleBCN.
Use above equality and, along with Pythagoras' help with rights ABG and CBG, solve.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top