Find standard matrix of linear transformation satisfying conditions

oracle104
Messages
1
Reaction score
0

Homework Statement



Find the standard matrix for the linear transformation T: R^3-->R^3 satisfying:
T([1 2 2]) = [1 0 -1], T([-1 -4 -5]) = [0 1 1], T([1 5 7]) = [0 2 0]

All of the vectors are columns not rows, I couldn't type them correctly as columns.

The Attempt at a Solution


I tried constructing a matrix using the vectors being applied to T and row reducing it. I cannot figure out where to go from there. I assume I need to find T of the standard basic vectors in some way. I believe I can figure it out if I can get a step in the right direction.
 
Last edited:
Physics news on Phys.org
Since T is linear, we know that T\left(\vec{u} + \vec{v}\right) = T\left(\vec{u}\right) + T\left(\vec{v}\right).
Since T is linear, we know that T\left(c \vec{v}\right) = c T\left(\vec{v}\right), for any real scalar c.

You can find the standard vectors as linear combinations of the given vectors by constructing an augmented matrix and row reducing, as you did.

For example:

\begin{pmatrix}1&& -1&& 1&& 1&&\\2&& -4&& 5&& 0&&\\ 2&& -5&& 7&& 0&&\end{pmatrix} -> \begin{pmatrix}1&& 0&& 0&& 3&&\\0&& 1&& 0&& 4&&\\ 0&& 0&& 1&& 2&&\end{pmatrix}

So we can write \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} as a linear combination of (3)\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} + (4)\begin{bmatrix} -1 \\ -4 \\ -5 \end{bmatrix} + (2)\begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}

Now we know that:

T\left(\begin{bmatrix}1 \\ 0 \\ 0 \end{bmatrix}\right) = T\left( (3)\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} + (4)\begin{bmatrix}-1 \\ -4 \\ -5 \end{bmatrix} + (2)\begin{bmatrix}1 \\ 5 \\ 7 \end{bmatrix}\right) = (3)T\left( \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right) + (2)T\left(\begin{bmatrix}-1 \\ -4 \\ -5 \end{bmatrix} \right) + (4)T\left(\begin{bmatrix}1 \\ 5 \\ 7 \end{bmatrix} \right)

So, what is:

(3)T\left( \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right) + (4)T\left(\begin{bmatrix}-1 \\ -4 \\ -5 \end{bmatrix} \right) + (2)T\left(\begin{bmatrix}1 \\ 5 \\ 7 \end{bmatrix} \right)

The values for the other standard vectors can be found with a similar process.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top