MHB Find Sum of $\dfrac{4k}{4k^4+1}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion focuses on calculating the sum of the series $$\sum_{k=1}^n \dfrac{4k}{4k^4+1}$$. Participants share their solutions and insights on the problem, with one user expressing appreciation for another's contribution. There is a mention of an online solution that will also be posted for fairness. The conversation emphasizes collaboration and sharing of mathematical solutions. Overall, the thread highlights a community effort in solving a specific mathematical series.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine the sum $$\sum_{k=1}^n \dfrac{4k}{4k^4+1}$$.
 
Mathematics news on Phys.org
Here is my solution:

We are given to evaluate:

$$S_n=\sum_{k=1}^n\left(\frac{4k}{4k^4+1} \right)$$

Partial fraction decomposition on the summand allows us to write:

$$S_n=\sum_{k=1}^n\left(\frac{1}{2k^2-2k+1}-\frac{1}{2k^2+2k+1} \right)$$

Observing that:

$$2(k+1)^2-2(k+1)+1=2k^2+2k+1$$

and using the rule of linearity of the summand and re-indexing the first sum, we obtain:

$$S_n=\sum_{k=0}^{n-1}\left(\frac{1}{2k^2+2k+1} \right)-\sum_{k=1}^n\left(\frac{1}{2k^2+2k+1} \right)$$

Pulling the first term from the first sum and the last term from the second sum, we may write:

$$S_n=1+\sum_{k=1}^{n-1}\left(\frac{1}{2k^2+2k+1} \right)-\sum_{k=1}^{n-1}\left(\frac{1}{2k^2+2k+1} \right)-\frac{1}{2n^2+2n+1}$$

The two sums add to zero, and we are left with:

$$S_n=1-\frac{1}{2n^2+2n+1}=\frac{2n(n+1)}{2n^2+2n+1}$$
 
MarkFL said:
Here is my solution:

We are given to evaluate:

$$S_n=\sum_{k=1}^n\left(\frac{4k}{4k^4+1} \right)$$

Partial fraction decomposition on the summand allows us to write:

$$S_n=\sum_{k=1}^n\left(\frac{1}{2k^2-2k+1}-\frac{1}{2k^2+2k+1} \right)$$

Observing that:

$$2(k+1)^2-2(k+1)+1=2k^2+2k+1$$

and using the rule of linearity of the summand and re-indexing the first sum, we obtain:

$$S_n=\sum_{k=0}^{n-1}\left(\frac{1}{2k^2+2k+1} \right)-\sum_{k=1}^n\left(\frac{1}{2k^2+2k+1} \right)$$

Pulling the first term from the first sum and the last term from the second sum, we may write:

$$S_n=1+\sum_{k=1}^{n-1}\left(\frac{1}{2k^2+2k+1} \right)-\sum_{k=1}^{n-1}\left(\frac{1}{2k^2+2k+1} \right)-\frac{1}{2n^2+2n+1}$$

The two sums add to zero, and we are left with:

$$S_n=1-\frac{1}{2n^2+2n+1}=\frac{2n(n+1)}{2n^2+2n+1}$$

Awesome, MarkFL! (Nerd)And thanks for participating!(Sun)
 
Hey MarkFL, I think I should post the solution which I saw online as well, just to be fair...:o
$$\begin{align*}\sum_{k=1}^n \dfrac{4k}{4k^4+1}&=\sum_{k=1}^n \dfrac{(2k^2+2k+1)-(2k^2-2k+1)}{(2k^2+2k+1)(2k^2-2k+1)}\\&=\sum_{k=1}^n \left(\dfrac{1}{2k^2-2k+1} -\dfrac{1}{2(k+1)^2-2(k+1)+1} \right)\\&=1-\dfrac{1}{2n^2+2n+1}\end{align*}$$

and we're done.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K