Find the Acute Angle Formed by Line y-(sqrt(3))x+1=0 & x-Axis

  • Thread starter Thread starter Agent_J
  • Start date Start date
  • Tags Tags
    Angle Line
Agent_J
Messages
13
Reaction score
0
Find the acute angle that is formed by the line y - (sqrt(3)) x + 1 = 0 and the x-axis.

better picture here:
http://members.rogers.com/agentj/images/math.jpg

I am totally lost with this one. It was from my old trigonometry test, but I don't see the relavance of the question to trigonometry :frown:
 
Last edited by a moderator:
Mathematics news on Phys.org
you know the gradient and that's tan of the angle you want
 
so how would I start tackling this question :redface: ?
 
What this is basically is polar coordinates.

We solve for y, and get y = sqrt(3) - 1. It's easier to do if the graph intersects the origin. Because this is just a straight line, the -1 can be removed from the equation and it won't change the angle to the x-axis. So, our equation is...

y = sqrt(3)x

Next, we need to get a point. Just to keep nice even answers, I'll use x = sqrt(3).

y = sqrt(3)x
y = sqrt(3)*sqrt(3)
y = 3

So, a point is (sqrt(3), 3).

Now, what you do is basically, it makes a triangle. The base (x) is sqrt(3), and the height (y) is 3.

We use our SOH-CAH-TOA trig functions, and see that tan = opp/adj. The opposite angle is the height/y, and the adjacent angle is the base/x.

I'm just using the letter t for now to make things easier...

tan t = 3/sqrt(3)
t = arctan(3/sqrt(3))

t = 60 degrees, or pi/3 if you're working in radians

NOTE: I always seem to goof something up whenever I try to help here, so someone else should just double check what I did.
 
apart from the fact that you made it far more complicated than it needs to be, that is correct.

y=mx+c

then the gradient is m and that is tan of the angle of the slope, that's all.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top