MHB Find the Conditions on A for Convergence of f(x) Root

  • Thread starter Thread starter house2012
  • Start date Start date
  • Tags Tags
    Convergence
AI Thread Summary
The discussion focuses on determining the conditions on A for the iteration \(x_{n+1}=x_n-Af(x_n)\) to converge to a root of the function f when starting near that root. It is established that convergence occurs if the initial estimate is sufficiently close to the solution, specifically when \(|1-Af'(x_0)|<1\). Additional conditions include A being positive and the function f crossing the x-axis with a positive slope. The convergence behavior can be categorized as monotonic or oscillating based on the relationship between \(A f(x)\) and the distance from the root. These insights are crucial for ensuring the effectiveness of the iterative method in finding roots.
house2012
Messages
2
Reaction score
0
Hey guys, I can't get his question dealing with orders of convergence at all so any help would be nice.

Q: Find the conditions on A so that the iteration $$x_{n+1}=x_n-Af(x_n)$$ will converge to a root of f if stared near the root.

I know I should look at the taylor series expansion of f about its root but I am stuck with working out.

Thanks for your help!
 
Mathematics news on Phys.org
house2012 said:
Hey guys, I can't get his question dealing with orders of convergence at all so any help would be nice.

Q: Find the conditions on A so that the iteration $$x_{n+1}=x_n-Af(x_n)$$ will converge to a root of f if stared near the root.

I know I should look at the taylor series expansion of f about its root but I am stuck with working out.

Thanks for your help!

Write \(x_n=x_0+\varepsilon_n\), where \(x_0\) is the root of \(f(x)\)

Then:

\[
x_{n+1}=x_0+\varepsilon_{n+1}=x_0+\varepsilon_n - A\{f(x_0)+\varepsilon_n f'(x_0)+...\}
\]

Ignoring terms or order 2 and higher in \(\varepsilon_n\) we find:

\[\varepsilon_{n+1}=\varepsilon_n(1-Af'(x_0)) \]

So convergence occurs when the initial estimate is close enough to the solution when:

\[|1-Af'(x_0)|<1\]

CB
 
Last edited:
house2012 said:
Hey guys, I can't get his question dealing with orders of convergence at all so any help would be nice.

Q: Find the conditions on A so that the iteration $$x_{n+1}=x_n-Af(x_n)$$ will converge to a root of f if stared near the root.

I know I should look at the taylor series expansion of f about its root but I am stuck with working out.

Thanks for your help!

In order to avoid confusion we indicate with $x^{*}$ the root of $f(*)$ and with $x_{0}$ the starting point of iterations. Other hypotheses are...

a) $A>0$...

b) $f(*)$ crosses the x axes with positive slope...

If a) and b) are satisfied, then, as explained in...

http://www.mathhelpboards.com/showthread.php?426-Difference-equation-tutorial-draft-of-part-I

... the sequence $x_{n}$ will converge to $x^{*}$ if it exists an interval $a<x<b$ which contains $x^{*}$ and $x_{0}$ ad where for any $x \ne x^{*}$ is...$\displaystyle |A\ f(x)|<2\ |x-x^{*}|$ (1)

More precisely if is...

$\displaystyle |A\ f(x)|\le |x-x^{*}|$ (2)

... the convergence will be 'monotonic' and if is...

$\displaystyle |x-x^{*}|<|A\ f(x)|<2\ |x-x^{*}|$ (3)

... the convergence will be 'oscillating'...

Kind regards

$\chi$ $\sigma$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top