MHB Find the Conditions on A for Convergence of f(x) Root

  • Thread starter Thread starter house2012
  • Start date Start date
  • Tags Tags
    Convergence
house2012
Messages
2
Reaction score
0
Hey guys, I can't get his question dealing with orders of convergence at all so any help would be nice.

Q: Find the conditions on A so that the iteration $$x_{n+1}=x_n-Af(x_n)$$ will converge to a root of f if stared near the root.

I know I should look at the taylor series expansion of f about its root but I am stuck with working out.

Thanks for your help!
 
Mathematics news on Phys.org
house2012 said:
Hey guys, I can't get his question dealing with orders of convergence at all so any help would be nice.

Q: Find the conditions on A so that the iteration $$x_{n+1}=x_n-Af(x_n)$$ will converge to a root of f if stared near the root.

I know I should look at the taylor series expansion of f about its root but I am stuck with working out.

Thanks for your help!

Write \(x_n=x_0+\varepsilon_n\), where \(x_0\) is the root of \(f(x)\)

Then:

\[
x_{n+1}=x_0+\varepsilon_{n+1}=x_0+\varepsilon_n - A\{f(x_0)+\varepsilon_n f'(x_0)+...\}
\]

Ignoring terms or order 2 and higher in \(\varepsilon_n\) we find:

\[\varepsilon_{n+1}=\varepsilon_n(1-Af'(x_0)) \]

So convergence occurs when the initial estimate is close enough to the solution when:

\[|1-Af'(x_0)|<1\]

CB
 
Last edited:
house2012 said:
Hey guys, I can't get his question dealing with orders of convergence at all so any help would be nice.

Q: Find the conditions on A so that the iteration $$x_{n+1}=x_n-Af(x_n)$$ will converge to a root of f if stared near the root.

I know I should look at the taylor series expansion of f about its root but I am stuck with working out.

Thanks for your help!

In order to avoid confusion we indicate with $x^{*}$ the root of $f(*)$ and with $x_{0}$ the starting point of iterations. Other hypotheses are...

a) $A>0$...

b) $f(*)$ crosses the x axes with positive slope...

If a) and b) are satisfied, then, as explained in...

http://www.mathhelpboards.com/showthread.php?426-Difference-equation-tutorial-draft-of-part-I

... the sequence $x_{n}$ will converge to $x^{*}$ if it exists an interval $a<x<b$ which contains $x^{*}$ and $x_{0}$ ad where for any $x \ne x^{*}$ is...$\displaystyle |A\ f(x)|<2\ |x-x^{*}|$ (1)

More precisely if is...

$\displaystyle |A\ f(x)|\le |x-x^{*}|$ (2)

... the convergence will be 'monotonic' and if is...

$\displaystyle |x-x^{*}|<|A\ f(x)|<2\ |x-x^{*}|$ (3)

... the convergence will be 'oscillating'...

Kind regards

$\chi$ $\sigma$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top