Find the equation of the normal to the graph at M(2,1)

  • Thread starter Thread starter Dell
  • Start date Start date
  • Tags Tags
    Graph Normal
Dell
Messages
555
Reaction score
0
if:
2x3+8lny+x3ey-16-8e=0

what i did was
dy/dx=\dot{y}

6x2+8(1/y)\dot{y}+3x2ey+x3ey\dot{y}=0

\dot{y}=-(x2(6+3ey)/(8/y+x3ey)

then to find the incline of the normal, m=-1/\dot{y}

so at(2,1)

\dot{y}=-3(2+e)/2(1+e)

m(N)=2(1+e)/3(2+e)

does this seem right??

Y-1=[2(1+e)/3(2+e)]{x-2}
 
Physics news on Phys.org
Yes, it's correct.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top