Find the General expression for the adiabatic relationship....

AI Thread Summary
The discussion focuses on finding the general expression for the adiabatic relationship between pressure (P) and volume (V) for any gas, starting from the known form of ideal gas adiabats. The user outlines steps involving the application of Maxwell relations and permuter techniques to derive the relationship. They mention encountering difficulties when trying to substitute certain partial derivatives, particularly when linking entropy (S) and temperature (T). The user is actively working through the problem and is determined to manipulate the derived expressions to reach the final result. The conversation highlights the complexity of applying thermodynamic principles to obtain the desired adiabatic relationship.
grandpa2390
Messages
473
Reaction score
14

Homework Statement



edit: I figured out my mistake

Here's the entire problem. But I don't yet need help with all the steps. I'm getting off on the wrong foot (as usual)a We have shown in class that ideal gas adiabats have the form: ##P_I(V_i)^γ = P_f(V_f)^γ## with the heat capacity ratio: ##γ = \frac{C_p}{C_v}## This problem is designed to find the general expression for the adiabatic relationship between P and V for any gas.

i. The adiabatic relationship between P and V begins with the completely general form: ##(\frac{∂P}{∂V})_s##

ii. Apply the permuter to this expression.

iii.Find two Maxwell relations to replace the resulting partial derivative expressions (you will need the inverter for one of them)

iv. Insert the expression we derived in class for the adiabatic relationship between V and T for one of the partials.

v. Use the permuter on the other partial derivative that came from step iii.

v. You should at this point be able to use the relationship: https://www.physicsforums.com/file://localhost/Users/simon/Library/Group%20Containers/UBF8T346G9.Office/msoclip1/01/clip_image008.png

vi. Use another Maxwell relation on the remaining partial derivative term from step v.

vii. Apply the permuter (in reverse) to the two partial derivatives to finally arrive at the general expression of the adiabatic relationship between P and V for any gas: https://www.physicsforums.com/file://localhost/Users/simon/Library/Group%20Containers/UBF8T346G9.Office/msoclip1/01/clip_image010.png

b. Show for the ideal gas that this equation integrates to the proper expression. (before integrating, I suggest you manipulate the result of https://www.physicsforums.com/file://localhost/Users/simon/Library/Group%20Containers/UBF8T346G9.Office/msoclip1/01/clip_image012.png into a form in terms of P and V only.)

Homework Equations


Maxwell Relations

The Attempt at a Solution


ii. so first I applied the permuter to ##(\frac{∂P}{∂V})_s##

I got ##(\frac{∂P}{∂S})_v(\frac{∂S}{∂V})_P##

iii. The adiabatic relationship derived in class between V and T is ##(\frac{∂V}{∂T})_s = \frac{-C_v}{\frac{RT}{V}}##

so I inverted the partial of P with respect to S and used the maxwell relation on it to get ##-\frac{∂V}{∂T}## and plugged in the adiabatic relationship. I used the maxwell relation on the partial of S with respect to V to get the partial of P with respect to T.

this is about where I get lost because after I use the maxwell relation and use the permuter I can't plug in the relationship:
##(\frac{∂S}{∂T})_p = \frac{C_p}{T}##
because I don't get a partial of S with respect to T.

I get the partial of P with respect to V (constant T) times the partial of V with respect to T (constant P)
 
Last edited by a moderator:
Physics news on Phys.org
I'm going to keep playing with it.
I may have it
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top