- #1
rannasquaer
- 7
- 0
How to solve the transforms below
\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]
\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]
How to solve the transforms below
\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]
The table of Laplace transforms lists that $\mathscr{L}^{-1} \frac{s+\alpha}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\cos(\omega t)\cdot u(t)$ and $\mathscr{L}^{-1} \frac{\omega}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\sin(\omega t)\cdot u(t)$.
Can we use those to find the requested transform?
I think yes, if I rewrite like
\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} \]
but I have \[ (s+\lambda)^2-\omega^2 \] and not \[ (s+\lambda)^2+\omega^2 \]
The table of Laplace transforms lists that \[ \mathscr{L}^{-1} \frac{\alpha}{s^2- \alpha^2} = \sin h(\alpha t).u(t) \] and \[ \mathscr{L}^{-1} \frac{s}{s^2- \alpha^2} = \cos h(\alpha t).u(t) \]
I do not know what to do now