Thank you for the confirmation. I arrived at this solution, assuming that ##\left(a, b, c\right) = \left(0, 0, 0\right)## (for short-writing),
\begin{align*}
0 &= \begin{bmatrix}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{bmatrix} f\left(0, 0, 0\right) + \begin{bmatrix}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{bmatrix} \begin{bmatrix}x \quad y \quad z \end{bmatrix} \begin{bmatrix} \frac{\partial f\left(0, 0, 0\right)}{\partial x} \\ \frac{\partial f\left(0, 0, 0\right)}{\partial y} \\ \frac{\partial f\left(0, 0, 0\right)}{\partial z} \end{bmatrix} + \frac{1}{2} \begin{bmatrix}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{bmatrix} \begin{bmatrix}x \quad y \quad z \end{bmatrix} \begin{bmatrix} \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x^2} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial y} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial z} \\ \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y\partial x} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y^2} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y \partial z} \\ \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial x} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial y} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z^2}\end{bmatrix}\begin{bmatrix}x \\ y \\ z \end{bmatrix}
\end{align*}
So, the first term is zero because ##f\left(0, 0, 0\right)## is constant. As for the second term, the right-most matrix is constant because the first derivative of the function was evaluated at ##\left(0, 0, 0\right)## (correct me if I am wrong), so it reduces to:
\begin{align*}
\begin{bmatrix}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{bmatrix} \begin{bmatrix}x \quad y \quad z \end{bmatrix} \begin{bmatrix} \frac{\partial f\left(0, 0, 0\right)}{\partial x} \\ \frac{\partial f\left(0, 0, 0\right)}{\partial y} \\ \frac{\partial f\left(0, 0, 0\right)}{\partial z} \end{bmatrix} &= \begin{bmatrix} \frac{\partial f\left(0, 0, 0\right)}{\partial x} \\ \frac{\partial f\left(0, 0, 0\right)}{\partial y} \\ \frac{\partial f\left(0, 0, 0\right)}{\partial z}\end{bmatrix}
\end{align*}
As for the final term,
\begin{align*}
\frac{1}{2} \begin{bmatrix}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{bmatrix} \begin{bmatrix}x \quad y \quad z \end{bmatrix} \begin{bmatrix} \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x^2} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial y} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial z} \\ \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y\partial x} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y^2} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y \partial z} \\ \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial x} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial y} \quad \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z^2}\end{bmatrix}\begin{bmatrix}x \\ y \\ z \end{bmatrix} \\
= \frac{1}{2} \begin{bmatrix}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{bmatrix} \begin{bmatrix}x \quad y \quad z \end{bmatrix} \begin{bmatrix} \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x^2}x + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial y}y + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial z}z \\ \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y\partial x}x + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y^2}y + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y \partial z}z \\ \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial x}x + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial y}y + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z^2}z\end{bmatrix} \\
= \frac{1}{2} \begin{bmatrix}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{bmatrix} \begin{bmatrix} \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x^2}x^2 + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial y}xy + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial z}xz + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y\partial x}yx + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y^2}y^2 + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y \partial z}yz + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial x}zx + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial y}zy + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z^2}z^2\end{bmatrix} \\
= \frac{1}{2} \begin{bmatrix} 2x \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x^2} + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial y}y + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial z}z + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y\partial x}y + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial x}z \\ \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial y}x + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y\partial x}x + 2y\frac{\partial^2 f\left(0, 0, 0\right)}{\partial y^2} + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y \partial z}z + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial y}z \\ \frac{\partial^2 f\left(0, 0, 0\right)}{\partial x \partial z}x + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial y \partial z}y + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial x}x + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial z \partial y}y + 2z\frac{\partial^2 f\left(0, 0, 0\right)}{\partial z^2}
\end{bmatrix}
\end{align*}
If the
partial differentiations are commutative, I should have 2 as a common factor in the matrix, which cancels out with the ##\frac{1}{2}##, and I can factor out the ##x##, ##y##, and ##z##. The final matrix notation should be,
\begin{align*}
\mathbf{0} &= 0 + \frac{\partial f\left(0, 0, 0\right)}{\partial \mathbf{x}} + \frac{\partial^2 f\left(0, 0, 0\right)}{\partial \mathbf{x}^2} \mathbf{x} \\
\mathbf{x} &= -\frac{\partial^2 f\left(0, 0, 0\right)}{\partial \mathbf{x}^2}^{-1} \frac{\partial f\left(0, 0, 0\right)}{\partial \mathbf{x}}
\end{align*}
And I just need to input this into the original equation to find the maximum (or minimum) point, right?
tnich said:
Hints: What conditions on ∇2f(a)∇2f(a)\nabla^2 f(\mathbf a) would have to hold for f(a)f(a)f(\mathbf a) to be a maximum or a minimum? Are you looking for a global extremum or a local one?
As for the second derivative, I think it should be positive if it's minimum and otherwise if it's maximum. I am interested in the local one, how much will it change if I am somehow interested in the global extremum?