MHB Find the sum of the first 17 terms of the arithmetic series

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the sum of the first 17 terms of the arithmetic series

$$8+\sqrt{7}, \ 6,\ 4-\sqrt{7}$$
$$u=8+\sqrt{7}$$
$$S_{17} =\frac{u\left(1-\frac{{6}^{17}} {u} \right)}{u}$$

My first shot at this
 
Last edited:
Mathematics news on Phys.org
Can you post the question as given?
 
Find the sum of the first 17 terms of the arithmetic series
 
Common difference, $d$: $-(2+\sqrt7)$

General term: $a_k=a_1+d(k-1)$

Sum: $\dfrac k2(a_1+a_k)$
 
We may write:

$$S_n=a_1+a_2+a_3+\cdots+a_{n-2}+a_{n-1}+a_{n}$$

Since we have an AP, and if we write the common difference as $d$, we may rewrite this as:

$$S_n=a_1+(a_1+d)+(a_1+2d)+\cdots+(a_1+(n-3)d)+(a_1+(n-2)d)+(a_1+(n-1)d)$$

By the commutative property of addition, we may rewrite this as:

$$S_n=(a_1+(n-1)d)+(a_1+(n-2)d)+(a_1+(n-3)d)+\cdots+(a_1+2d)+(a_1+d)+a_1$$

Adding these two equations, by corresponding terms, we obtain:

$$2S_n=n(2a_1+(n-1)d)$$

$$S_n=\frac{n}{2}(2a_1+(n-1)d)$$

This is equivalent to the formula given by greg1313.

In the given problem, we know:

$$a_1=8+\sqrt{7},\,d=-(2+\sqrt{7}),\,n=17$$
 
$$S_{17}=\frac{17}{2}
\left(2\left(8+\sqrt{7}\right)
+\left(17-1\right)
(-\left(2+\sqrt{7}\right)) \right)$$

Hopefully
 
karush said:
$$S_{17}=\frac{17}{2}
\left(2\left(8+\sqrt{7}\right)
+\left(17-1\right)
(-\left(2+\sqrt{7}\right)) \right)$$

Hopefully

You will want to simplify by distributing/combining like terms, etc. :)
 
$S_{17}=\frac{17}{2}
\left(2\left(8+\sqrt{7}\right)
+\left(17-1\right)
(-\left(2+\sqrt{7}\right)) \right)=\sqrt{7}+104$
 
I get:

$$S_{17}=-17(8+7\sqrt{7})$$
 

Similar threads

Back
Top