- #1
Saracen Rue
- 150
- 10
Homework Statement
[/B]
A particle of mass ## 2 kg ## is initially traveling with a constant velocity of ## \frac{\pi }{2}\ ms^{-1}##. The particle is acted upon by a resistance force, ## F=-2v\tan \left(v\right)e^{2x}##, where ##v## is the velocity in ##ms^{-1}## and ##x## is the displacement of the particle in meters at any time ##t##. Let ##t## be the time elapsed, in seconds, after the force is applied. Find the time taken for the particle to travel a distance of ##1.55 m##, expressing your answer in minutes correct to ##2## decimal places.
Homework Equations
Using calculus to convert between displacement, velocity and acceleration
##v=\frac{dx}{dt}##
##a=\frac{dv}{dt}=\frac{d^2x}{dt^2}=v\cdot \frac{dv}{dx}=\frac{d\left(\frac{1}{2}v^2\right)}{dx}##
The Attempt at a Solution
[/B]
##F=-2v\tan \left(v\right)e^{2x}##
##a=-v\tan \left(v\right)e^{2x}##
##v\cdot \frac{dv}{dx}=-v\tan \left(v\right)e^{2x}##
##\frac{v}{-v\tan \left(v\right)}dv=e^{2x}dx##
##\int _{ }^{ }-\cot \left(v\right)dv=\int _{ }^{ }e^{2x}dx##
##-\ln \left(\sin \left(v\right)\right)=\frac{1}{2}e^{2x}+c##
"initially traveling with a constant velocity of ##\frac{\pi }{2}\ ms^{-1}##"
Therefore at ##t=0##, ##v=\frac{\pi }{2}##. The question also states that ##x## is the displacement after the force has been applied, therefore at ##t=0##, ##x=0##.
##-\ln \left(\sin \left(v\right)\right)=\frac{1}{2}e^{2x}+c##
##-\ln \left(\sin \left(\frac{\pi }{2}\right)\right)=\frac{1}{2}e^{2\left(0\right)}+c##
##-\ln \left(1\right)=\frac{1}{2}+c##
Therefore, ##c=-\frac{1}{2}##
##-\ln \left(\sin \left(v\right)\right)=\frac{1}{2}e^{2x}-\frac{1}{2}##
##\sin \left(v\right)=e^{-\frac{1}{2}\left(e^{2x}-1\right)}##
##v=\arcsin \left(e^{-\frac{1}{2}\left(e^{2x}-1\right)}\right)##
##\frac{dx}{dt}=\arcsin \left(e^{-\frac{1}{2}\left(e^{2x}-1\right)}\right)##
##\frac{dt}{dx}=\frac{1}{\arcsin \left(e^{-\frac{1}{2}\left(e^{2x}-1\right)}\right)}##
##t=\int _{ }^{ }\frac{1}{\arcsin \left(e^{-\frac{1}{2}\left(e^{2x}-1\right)}\right)}dx##
This is where I get stuck. There's no way to get the integral of ##\frac{1}{\arcsin \left(e^{-\frac{1}{2}\left(e^{2x}-1\right)}\right)}## that I know of. I tried putting it into Wolfram Alpha but it said no result found in terms of standard mathematical functions. Have I done some of the intermediate steps wrong to arrive at this function which can't be integrated? Or is there another way of doing this? Any help is much appreciated.