Albert1
- 1,221
- 0
$\sqrt {x+\dfrac {1}{x}+1}+\sqrt {x+\dfrac {1}{x}}=x $
find the value(s) of $x$
find the value(s) of $x$
lfdahl said:My attempt:
Given the equation:
\[\sqrt{x+\frac{1}{x}+1}+\sqrt{x+\frac{1}{x}} = x\: \: \:\: \: \: \: \: \: \; (1)\]
Let $y = x+\frac{1}{x}$.
Squaring the given equation:
\[\left ( \sqrt{y+1}+\sqrt{y} \right )^2 = x^2 \Rightarrow 2y + 1+2\sqrt{y^2+y}=x^2 \]
Squaring again:
\[\Rightarrow 4(y^2+y)=\left ( x^2-2y-1 \right )^2\] \[\Rightarrow 4y^2+4y = 4y^2+4y-4x^2y+x^4-2x^2+1 \] \[ \Rightarrow 4x^2y -x^4+2x^2-1=0\]
The last equation is a polynomial of 4th degree:
\[4x^2\left ( x+\frac{1}{x} \right )-x^4+2x^2-1 = 0 \] \[ \Rightarrow x^4-4x^3-2x^2-4x+1 = 0\]
This looks a lot like $(x-1)^4$ except for the midterm ($-2x^2$), so we´ll have to correct with $-8x^2$. The polynomial then has the form:\[(x-1)^4-8x^2 = 0\]
Taking the square root of the identity: $(x-1)^4=8x^2$ leads to:
\[x^2-(2+\sqrt{8})x+1 = 0\]
There are two positive roots \[x = \frac{1}{2}\left ( 2+\sqrt{8} \pm \sqrt{8+4\sqrt{8}} \right )\]
or
\[x = 1+\sqrt{2}\pm \sqrt{2+\sqrt{8}} = 1+\sqrt{2}\left ( 1 \pm\sqrt{1+\sqrt{2}} \right ) \approx \left\{\begin{matrix} 4.612\\0.217 = \frac{1}{4.612} \end{matrix}\right.\]
The roots are reciprocals, because the left hand side of $(1)$ is symmetric in $x$ and $\frac{1}{x}$, so both roots yield the same RHS, namely $\approx$ 4.612. Therefore, only the larger root is valid.