Catchfire
- 30
- 0
Homework Statement
<br /> A = \left( \begin{array}{ccc}<br /> 2 & 0 & -1 \\<br /> 4 & 1 & -4 \\<br /> 2 & 0 & -1 \end{array} \right)<br />
Find the eigenvalues and corresponding eigenvectors that form a basis over R3
Homework Equations
The Attempt at a Solution
OK so I've found the characteristic polynomial: -λ(λ-1)2
so I know my eigenvalues are 0,1,1
Then to find the eigenvectors I sub the eigenvalues into the matrix A - λI
<br /> A - 0I = \left( \begin{array}{ccc}<br /> 2 & 0 & -1 \\<br /> 4 & 1 & -4 \\<br /> 2 & 0 & -1 \end{array} \right)<br />
then I solve:
2x -z = 0
4x + y -4z = 0
z = 2x
y = 4x
so my eigenvector is (1,4,2)
<br /> A - 1I = \left( \begin{array}{ccc}<br /> 1 & 0 & -1 \\<br /> 4 & 0 & -4 \\<br /> 2 & 0 & -2 \end{array} \right)<br />
x = z
so the eigenvector is (1,0,1)
Now I'm out of new eigenvalues to substitute. How do I find the last eigenvector?