MHB Finding a third degree polynomial... stumped

  • Thread starter Thread starter lashia
  • Start date Start date
  • Tags Tags
    Degree Polynomial
AI Thread Summary
To find a third-degree polynomial with rational coefficients that has zeros at 6 and -i, and passes through the point (2, -10), the initial attempt was to use the polynomial form (x-6)(x^2+1). However, this resulted in the polynomial passing through (2, -20) instead. The correct approach involves introducing a constant A, leading to the polynomial f(x) = A(x-6)(x^2+1). By solving for A using the point (2, -10), it is determined that A should be 1/2, resulting in the final polynomial f(x) = (1/2)(x-6)(x^2+1). This solution successfully meets the criteria of the problem.
lashia
Messages
3
Reaction score
0
Problem:

Find a third degree polynomial with rational coefficients if two of its zeros
are 6 and – 𝑖 and it passes through the point (2, -10)So far, I have came up with this:
(x-6)(x^2+1) however, instead of passing through (2,-10), it passes through (2,-20)

Anyone know how to come up with a third degree polynomial with 6,-i as its zeros, and passes through (2,-10)? It has given me a headache!

Thank you in advance.
 
Mathematics news on Phys.org
lashia said:
Problem:

Find a third degree polynomial with rational coefficients if two of its zeros
are 6 and – 𝑖 and it passes through the point (2, -10)So far, I have came up with this:
(x-6)(x^2+1) however, instead of passing through (2,-10), it passes through (2,-20)

Anyone know how to come up with a third degree polynomial with 6,-i as its zeros, and passes through (2,-10)? It has given me a headache!

Thank you in advance.

you have done right except a small modification that you need to yo do

$f(x) = A(x-6)(x^2+1)$ where A is a constant
putting the values you get A = 2

so $f(x) = 2(x-6)(x^2+1)$
 
Last edited:
Thank you so much.. what a relief!
 
kaliprasad said:
you have done right except a small modification that you need to yo do

$f(x) = A(x-6)(x^2+1)$ where A is a constant
putting the values you get A = 2

so $f(x) = 2(x-6)(x^2+1)$

It doesn't seem tp pass through (2,-10) :confused:
 
Hi lashia,

kaliprasad's value of $A$ should instead be $A = 1/2$. Check now to see that the polynomial passes through $(2,-10)$ with $A = 1/2$.
 
lashia said:
It doesn't seem tp pass through (2,-10) :confused:

Let's go back to:

$$f(x)=A(x-6)\left(x^2+1\right)$$

Now, we set:

$$f(2)=A(2-6)\left(2^2+1\right)=-20A=-10\implies A=\frac{1}{2}$$

And so we have:

$$f(x)=\frac{1}{2}(x-6)\left(x^2+1\right)$$ :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top