MHB Finding a third degree polynomial... stumped

  • Thread starter Thread starter lashia
  • Start date Start date
  • Tags Tags
    Degree Polynomial
AI Thread Summary
To find a third-degree polynomial with rational coefficients that has zeros at 6 and -i, and passes through the point (2, -10), the initial attempt was to use the polynomial form (x-6)(x^2+1). However, this resulted in the polynomial passing through (2, -20) instead. The correct approach involves introducing a constant A, leading to the polynomial f(x) = A(x-6)(x^2+1). By solving for A using the point (2, -10), it is determined that A should be 1/2, resulting in the final polynomial f(x) = (1/2)(x-6)(x^2+1). This solution successfully meets the criteria of the problem.
lashia
Messages
3
Reaction score
0
Problem:

Find a third degree polynomial with rational coefficients if two of its zeros
are 6 and – 𝑖 and it passes through the point (2, -10)So far, I have came up with this:
(x-6)(x^2+1) however, instead of passing through (2,-10), it passes through (2,-20)

Anyone know how to come up with a third degree polynomial with 6,-i as its zeros, and passes through (2,-10)? It has given me a headache!

Thank you in advance.
 
Mathematics news on Phys.org
lashia said:
Problem:

Find a third degree polynomial with rational coefficients if two of its zeros
are 6 and – 𝑖 and it passes through the point (2, -10)So far, I have came up with this:
(x-6)(x^2+1) however, instead of passing through (2,-10), it passes through (2,-20)

Anyone know how to come up with a third degree polynomial with 6,-i as its zeros, and passes through (2,-10)? It has given me a headache!

Thank you in advance.

you have done right except a small modification that you need to yo do

$f(x) = A(x-6)(x^2+1)$ where A is a constant
putting the values you get A = 2

so $f(x) = 2(x-6)(x^2+1)$
 
Last edited:
Thank you so much.. what a relief!
 
kaliprasad said:
you have done right except a small modification that you need to yo do

$f(x) = A(x-6)(x^2+1)$ where A is a constant
putting the values you get A = 2

so $f(x) = 2(x-6)(x^2+1)$

It doesn't seem tp pass through (2,-10) :confused:
 
Hi lashia,

kaliprasad's value of $A$ should instead be $A = 1/2$. Check now to see that the polynomial passes through $(2,-10)$ with $A = 1/2$.
 
lashia said:
It doesn't seem tp pass through (2,-10) :confused:

Let's go back to:

$$f(x)=A(x-6)\left(x^2+1\right)$$

Now, we set:

$$f(2)=A(2-6)\left(2^2+1\right)=-20A=-10\implies A=\frac{1}{2}$$

And so we have:

$$f(x)=\frac{1}{2}(x-6)\left(x^2+1\right)$$ :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top