Finding an Invertible Matrix for Matrix Diagonalization

misterau
Messages
20
Reaction score
0

Homework Statement


A =

-10 6 3
-26 16 8
16 -10 -5

B =

0 -6 -16
0 17 45
0 -6 -16

(a) Show that 0, -1 and 2 are eigenvalues both of A and of B .
(b) Find invertible matrices P and Q so that (P^-1)*(A)*(P) = (Q^-1)*(B)*(Q)=

0 0 0
0 -1 0
0 0 2

(c) Find an invertible matrix R for which (R^-1)*(A)*(R) = B

Homework Equations





The Attempt at a Solution


I was able to do Q1 and Q2 but not Q3.
For Q2:
P =
0 1 1
-1 2 3
2 -1 -2

Q =
1 2 1
0 -5 -3
2 2 1

Not really sure about Q3, since matrix B is not in the form I am used too.
edit: I thought about it.
using, (P^-1)*(A)*(P) = (Q^-1)*(B)*(Q)
(Q)*(P^-1)*(A)*(P)*(Q^-1) = (Q)*(Q^-1)*(B)*(Q)*(Q^-1)
(Q)*(P^-1)*(A)*(P)*(Q^-1) = (B)
R = (P)*(Q^-1)
 
Last edited:
Physics news on Phys.org
misterau said:

Homework Statement


A =

-10 6 3
-26 16 8
16 -10 -5

B =

0 -6 -16
0 17 45
0 -6 -16

(a) Show that 0, -1 and 2 are eigenvalues both of A and of B .
(b) Find invertible matrices P and Q so that (P^-1)*(A)*(P) = (Q^-1)*(B)*(Q)=

0 0 0
0 -1 0
0 0 2

(c) Find an invertible matrix R for which (R^-1)*(A)*(R) = B

Homework Equations





The Attempt at a Solution


I was able to do Q1 and Q2 but not Q3.
For Q2:
P =
0 1 1
-1 2 3
2 -1 -2

Q =
1 2 1
0 -5 -3
2 2 1

Not really sure about Q3, since matrix B is not in the form I am used too.
edit: I thought about it.
using, (P^-1)*(A)*(P) = (Q^-1)*(B)*(Q)
(Q)*(P^-1)*(A)*(P)*(Q^-1) = (Q)*(Q^-1)*(B)*(Q)*(Q^-1)
(Q)*(P^-1)*(A)*(P)*(Q^-1) = (B)
R = (P)*(Q^-1)

Yes, of course! Now it's just a matter of finding Q^-1 and multiplying.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top