MHB Finding Angle P in Isosceles Triangle $PQR$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Angle Triangle
AI Thread Summary
In the isosceles triangle $PQR$, where $PQ = PR$, the angle bisector at $Q$ intersects $PR$ at point $A$, and it is established that $QR = QA + PA$. By applying the sine rule, relationships between the segments $QA$, $PA$, and $QP$ are derived, leading to the equation $\sin4\alpha + \sin\alpha = 2\cos2\alpha\sin3\alpha$. This simplifies to $\sin4\alpha = \sin5\alpha$, resulting in the angle $\alpha = \pi/9$. Consequently, angle $P$ is determined to be $\beta = 100^\circ$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Triangle $PQR$ is an isosceles triangle with $PQ=PR$. Given that the angle bisector at $Q$ meets $PR$ at $A$ and that $QR=QA+PA$. Find angle $P$.
 
Mathematics news on Phys.org
[sp]
With the angles labelled as in the diagram, $\beta = \pi - 4\alpha.$

By the sine rule in triangle $QAP$, $$ \frac{QA}{\sin4\alpha} = \frac{PA}{\sin\alpha} = \frac{QP}{\sin3\alpha}.$$ Therefore $$QA = \frac{\sin4\alpha}{\sin3\alpha}QP, \qquad PA = \frac{\sin\alpha}{\sin3\alpha}QP.$$ By the sine rule in triangle $PQR$, $\dfrac{QR}{\sin4\alpha} = \dfrac{QP}{\sin2\alpha}$ and therefore $QR = \dfrac{\sin4\alpha}{\sin2\alpha}QP = 2\cos2\alpha\cdot QP.$ But $QR = QA + PA$ and so $$\frac{\sin4\alpha}{\sin3\alpha} + \frac{\sin\alpha}{\sin3\alpha} = 2\cos2\alpha,$$ $$\sin4\alpha + \sin\alpha = 2\cos2\alpha\sin3\alpha = \sin5\alpha + \sin\alpha$$ (using the addition formula $2\sin x \cos y = \sin(x+y) + \sin(x-y)$). Therefore $\sin4\alpha = \sin5\alpha$, which means that $4\alpha = \pi - 5\alpha$, or $\alpha = \pi/9$. Finally, $\beta = \pi - 4\alpha = 5\pi/9$, or in degrees $\beta = 100^\circ.$[/sp]
 

Attachments

  • triangle.png
    triangle.png
    2.2 KB · Views: 100
Thanks for participating and your elegant solution, Opalg!:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top