ferry2
- 15
- 0
Can you tell me is my solution true of the next problem.
Find center w_0 and radius R of the circle k, in which the transformation w=\frac{z+2}{z-2}
converts the line l:\text{Im} z+\text{Re} z=0.
Solution:
2 \to\infty
-2i=(2)^*\to w_0
w_0=w(-2i)=\frac{-2i+2}{-2i-2}=\frac{1-i}{-1-i}*\frac{-1+i}{-1+i}=i - center of k
0\to \frac{0+2}{0-2}=-1\in k
R=|-1-i|=\sqrt{2}
And can you help me with these problems:
1. Find the image of the domain \left{\begin{array}{ll}\text{Re}>0 \\ \text{Im} >0 \end{array}\right, cut along the arc \left{\begin{array}{ll} |z|=1 \\ 0 \le \arg z \le \frac{\pi}{4} \end{array}\right, by transformation w=\frac{1}{z^2}
2. The domain \left{\begin{array}{ll} |z-1|<1 \\ |z-\frac{1}{3}|>\frac{1}{3} \end{array}\right, cut along the segment [1;2], to display conformal in the stripe 0<\text{Im} w<1.
Thanks in advansed :) .
Find center w_0 and radius R of the circle k, in which the transformation w=\frac{z+2}{z-2}
converts the line l:\text{Im} z+\text{Re} z=0.
Solution:
2 \to\infty
-2i=(2)^*\to w_0
w_0=w(-2i)=\frac{-2i+2}{-2i-2}=\frac{1-i}{-1-i}*\frac{-1+i}{-1+i}=i - center of k
0\to \frac{0+2}{0-2}=-1\in k
R=|-1-i|=\sqrt{2}
And can you help me with these problems:
1. Find the image of the domain \left{\begin{array}{ll}\text{Re}>0 \\ \text{Im} >0 \end{array}\right, cut along the arc \left{\begin{array}{ll} |z|=1 \\ 0 \le \arg z \le \frac{\pi}{4} \end{array}\right, by transformation w=\frac{1}{z^2}
2. The domain \left{\begin{array}{ll} |z-1|<1 \\ |z-\frac{1}{3}|>\frac{1}{3} \end{array}\right, cut along the segment [1;2], to display conformal in the stripe 0<\text{Im} w<1.
Thanks in advansed :) .