bobred
- 170
- 0
Linear momentum 2d collision
Two particles A and B of mass m and 3m respectively, A collides with B. Find the coefficient of restitution e if \textbf{v}_{A} is purely in the \textbf{j}-direction.
Velocity of each particle before collision.
\dot{\textbf{r}}_{A}=9 \textbf{i}+5\textbf{j}
\dot{\textbf{r}}_{B}=2 \textbf{i}+2\textbf{j}
The x and y velocity components before collision
\dot{x}_{A}, \dot{y}_{A}, \dot{x}_{B} and \dot{y}_{B}
The x and y velocity components after collision
\dot{X}_{A}, \dot{Y}_{A}, \dot{X}_{B} and \dot{Y}_{B}
The common tangent is the \textbf{j} axis.
\dot{y}_{A}\textbf{j}=\dot{Y}_{A}\textbf{j} and \dot{y}_{B}\textbf{j}=\dot{Y}_{B}\textbf{j}
(\dot{X}_{A}-\dot{X}_{B})\textbf{i}=-e(\dot{x}_{A}-\dot{x}_{B})\textbf{i}
m\dot{\textbf{r}}=m\textbf{v}
With the values above I find the velocities after collision
\textbf{v}_{A}=(-\frac{21}{4}e+\frac{15}{4})\textbf{i}+5\textbf{j}
\textbf{v}_{B}=(\frac{7}{4}e+\frac{15}{4})\textbf{i}+2\textbf{j}
How do I find e if \textbf{v}_{A} is purely in the \textbf{j}-direction?
If I use(which is in the i-direction)
(\dot{X}_{A}-\dot{X}_{B})=-e(\dot{x}_{A}-\dot{x}_{B})
I get e=0, a totally inelastic collision.
Thanks in advance.
Homework Statement
Two particles A and B of mass m and 3m respectively, A collides with B. Find the coefficient of restitution e if \textbf{v}_{A} is purely in the \textbf{j}-direction.
Velocity of each particle before collision.
\dot{\textbf{r}}_{A}=9 \textbf{i}+5\textbf{j}
\dot{\textbf{r}}_{B}=2 \textbf{i}+2\textbf{j}
The x and y velocity components before collision
\dot{x}_{A}, \dot{y}_{A}, \dot{x}_{B} and \dot{y}_{B}
The x and y velocity components after collision
\dot{X}_{A}, \dot{Y}_{A}, \dot{X}_{B} and \dot{Y}_{B}
Homework Equations
The common tangent is the \textbf{j} axis.
\dot{y}_{A}\textbf{j}=\dot{Y}_{A}\textbf{j} and \dot{y}_{B}\textbf{j}=\dot{Y}_{B}\textbf{j}
(\dot{X}_{A}-\dot{X}_{B})\textbf{i}=-e(\dot{x}_{A}-\dot{x}_{B})\textbf{i}
m\dot{\textbf{r}}=m\textbf{v}
The Attempt at a Solution
With the values above I find the velocities after collision
\textbf{v}_{A}=(-\frac{21}{4}e+\frac{15}{4})\textbf{i}+5\textbf{j}
\textbf{v}_{B}=(\frac{7}{4}e+\frac{15}{4})\textbf{i}+2\textbf{j}
How do I find e if \textbf{v}_{A} is purely in the \textbf{j}-direction?
If I use(which is in the i-direction)
(\dot{X}_{A}-\dot{X}_{B})=-e(\dot{x}_{A}-\dot{x}_{B})
I get e=0, a totally inelastic collision.
Thanks in advance.
Last edited: