MHB Finding Domain of f(x)=\frac{1}{x^{2}-x-6}

  • Thread starter Thread starter badatmath
  • Start date Start date
  • Tags Tags
    Domain
Click For Summary
To find the domain of the function f(x)=1/(x^2-x-6), the first step is to set the denominator equal to zero, resulting in the equation x^2-x-6=0. This quadratic can be factored into (x-3)(x+2)=0, leading to the solutions x=-2 and x=3, which are the values that must be excluded from the domain. Consequently, the domain in interval notation is (-∞,-2)∪(-2,3)∪(3,∞). The discussion highlights the importance of factoring and provides an alternative method of completing the square for solving quadratics.
badatmath
Messages
3
Reaction score
0
I'm supposed to find the domain of this function, I know I'm supposed to set the denominator equal to 0 but I don't know what to do after that, please help!

$$f(x)=\frac{1}{x^{2}-x-6}$$

I can't figure out how to make this look like a real fraction but it's supposed to be 1 over x squared minus x minus 6.
 
Last edited by a moderator:
Mathematics news on Phys.org
Okay, to find the values that need to be excluded from the domain because they cause division by zero, we set:

$$x^2-x-6=0$$

Can the quadratic on the left perhaps be factored?
 
So I add 6. That makes x^2-x=6, and then what?
 
badatmath said:
So I add 6. That makes x^2-x=6, and then what?

No, you want to ask yourself, "Are there two factors of -6 whose sum is -1?"

Look at the following:

$$(x+a)(x+b)=x^2+(a+b)x+ab$$

So, you need to find an $a$ and a $b$ such that $ab=-6$ and $a+b=-1$...what do you find?
 
I figured it out!

$$x^2-x-6=0$$

$$(x-3)(x+2)=0$$

$$x\in\{-2,3\}$$

And so the domain, in interval notation, is:

$$(-\infty,-2)\,\cup\,(-2,3)\,\cup\,(3,\infty)$$
 
The proper way to factor a quadratic is "to complete the square".

In general, if we have:

$x^2 + px + q = 0$, we can through some algebraic trickery, make it be:

$x^2 + 2\left(\dfrac{p}{2}\right)x + \dfrac{p^2}{4} - \dfrac{p^2}{4} + q = 0$

or:

$\left(x + \dfrac{p}{2}\right)^2 = \dfrac{p^2 - 4q}{4}$.

In your case, we have $p = -1$, and $q = -6$, and the "ugly" expression on the right becomes:

$\dfrac{1 - 4(-6)}{4} = \dfrac{25}{4} = \left(\dfrac{5}{2}\right)^2$.

This is most convenient, since we can now "just take square roots", either:

$x - \dfrac{1}{2} = \dfrac{5}{2}$, or:

$x - \dfrac{1}{2} = -\dfrac{5}{2}$

Although MarkFL's approach is valid, it only works on "easily factorable" quadratics, and you might not know ahead of time if you have one.

- - - Updated - - -

badatmath said:
I figured it out!

$$x^2-x-6=0$$

$$(x-3)(x+2)=0$$

$$x\in\{-2,3\}$$

And so the domain, in interval notation, is:

$$(-\infty,-2)\,\cup\,(-2,3)\,\cup\,(3,\infty)$$

Good job!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
974
  • · Replies 2 ·
Replies
2
Views
1K