Finding Eigenvectors with Close Eigenvalues

  • Thread starter Thread starter cookiesyum
  • Start date Start date
  • Tags Tags
    Eigenvectors
cookiesyum
Messages
72
Reaction score
0

Homework Statement



Given the characteristic polynomial -2+x-2x^2-x^3, find the eigenvalues and eigenvectors of the matrix [-1, -1, 0] [1, 1, 1] [3, 1, -2]

Homework Equations


The Attempt at a Solution



The eigenvalues are -2.659, 0.329-.802i, and 0.329+.802i. Next you plug each eigenvalue into the matrix A-xI to solve the system (A-xI)v=0 and find the eigenvectors. Then you solve the system by reducing the matrix to row echelon form. However, when I do that I get the identity matrix. So then what are the eigenvectors?
 
Physics news on Phys.org
That occurs often when the eigenvalues are not close enough. You either need to switch to a less sensitive method, or find closer approximations to the eigenvalues.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top