Finding Fourier Series Coefficients

Click For Summary
SUMMARY

The discussion focuses on finding the Fourier series coefficients \( X_k \) for the periodic signal \( x(t) = 5\cos(6\omega_0 t + \frac{\pi}{2}) \). Participants express confusion regarding the terms "digital or discrete spectrum" and the calculation of the three coefficients: \( a_0 \), \( a_n \), and \( b_n \). The conversation highlights the need for clarity on how to derive these coefficients and the implications of the continuous time signal represented by \( x(t) \).

PREREQUISITES
  • Understanding of Fourier series and its representation
  • Familiarity with periodic signals and their properties
  • Knowledge of trigonometric functions and their transformations
  • Basic calculus, particularly integration techniques
NEXT STEPS
  • Study the derivation of Fourier series coefficients \( a_0 \), \( a_n \), and \( b_n \)
  • Learn about the differences between continuous and discrete spectra in signal processing
  • Explore properties of even and odd functions in relation to Fourier series
  • Review integral equations used for calculating Fourier coefficients
USEFUL FOR

Students and professionals in electrical engineering, signal processing, and applied mathematics who are looking to deepen their understanding of Fourier series and their applications in analyzing periodic signals.

Pete_01
Messages
49
Reaction score
0

Homework Statement


Find the Fourier series coefficients X_k of the periodic signal:
x(t) = 5cos(6w_0t+pi/2)
(digital or discrete spectrum)


Homework Equations





The Attempt at a Solution



I am really confused with all of this and don't even know how to start.
 
Physics news on Phys.org
What do you mean by "digital or discrete spectrum" ? The '(t)' in x(t) designates a continuous time dependent signal.

Anyway, are you familiar with the 3 co-efficients (a0, an, & bn), the way the Fourier series will be represented after you find them, how to calculate each one, and any shortcuts (like an odd or even function) that may hasten the process?
 
Zryn said:
What do you mean by "digital or discrete spectrum" ? The '(t)' in x(t) designates a continuous time dependent signal.

Anyway, are you familiar with the 3 co-efficients (a0, an, & bn), the way the Fourier series will be represented after you find them, how to calculate each one, and any shortcuts (like an odd or even function) that may hasten the process?

I am not familiar with the 3 coefficients. The book did not cover this. I was only give an integral equation and a summation (for discrete signals).
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K