Finding Invertible Matrices for Equal Eigenvalues

  • Thread starter Thread starter smerhej
  • Start date Start date
smerhej
Messages
20
Reaction score
0

Homework Statement


Let A =

\begin{bmatrix}
\lambda & a \\
0 & \lambda \\
\end{bmatrix}

and B =

\begin{bmatrix}
\lambda & b \\
0 & \lambda \\
\end{bmatrix}

Assuming that a ≠ 0, and b ≠ 0 ; find a matrix X such that X-1AX = B.




Homework Equations



(A- \lambdaI)v=0


The Attempt at a Solution



I tried using the following logic: Let B = {v1, v2,...vn}
be the basis of Fn consisting of the columns of X. We know that column j of B is
equal to [Avj ]B, that is, the coordinates of Avj with respect to the basis B.

But because of the two matrices having the exact same eigenvalues, I just end up with a=0, and am unable to actually find an invertible matrix X. Am I misreading the question, the logic, etc..?
 
Physics news on Phys.org
Also in case the notation is different elsewhere, lambda = eigenvalue.
 
Last edited:
Am I missing something because from what I can tell just set up a 2x2 matrix with 4 unknown elements setup 4 equations and find a matrix X which satisfies those four equations.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top