Finding Limits with DeltaX: An Essential Tool for Calculus

  • Thread starter Thread starter Witcher
  • Start date Start date
  • Tags Tags
    Limit
Witcher
Messages
15
Reaction score
3
Homework Statement
Lim as F(x)= (x+δx)^2-2(x+δx)+1(x^2-2x+1)/δx
δx-> 0

I have a δx left over and i don’t know how to get rid of it.
Relevant Equations
Lim as F(x)= (x+δx)^2-2(x+δx)+1(x^2-2x+1)/δx
δx-> 0
How can i get rid of the last delta x
 

Attachments

  • image.jpg
    image.jpg
    51.3 KB · Views: 186
Physics news on Phys.org
Witcher said:
I have a δx left over and i don’t know how to get rid of it.
How can i get rid of the last delta x

Take the limit as ##\delta x \rightarrow 0##.
 
like this right
 

Attachments

  • image.jpg
    image.jpg
    48.2 KB · Views: 184
Witcher said:
like this right

The idea is correct. I would say you need to keep ##\lim_{\Delta x \rightarrow 0}## in every line until you take the limit.
 
  • Like
Likes Mark44
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top