Finding Magnitude of v+iw in a Complex Inner Product Space

phagist_
Messages
24
Reaction score
0

Homework Statement


Let v,w be vectors in a complex inner product space such that ||v|| = 1,
||w|| = 3 and <v,w> = 1 + 2i. Find ||v + iw||.


Homework Equations


The properties of an inner product.


The Attempt at a Solution


I figured
||v+iw||^2 = <v+iw,v+iw>

Then using the properties of the inner product, I broke it up;

||v+iw||^2 = <v,v+iw>+<iw,v+iw>

and <v,v+iw> = <v,v> + <v,iw> and using the 'conjugate symmetry'
= <v,v> - i<v,w>
= 1-i(1+2i)
= 3-i

Now for <iw,v+iw>;
=i<w,v+iw>
=i{<w,v>+<w,iw>}
=i{1-2i - i<w,w>} (since <v,w>=\overline{&lt;w,v&gt;})
=i+2-9i
=2-8i

Now combining it all i get ||v+iw||^2 = 5-9i

But this is supposed to be the square of the magnitude of v+iw.. so it should be a real number right?

Can somebody help point out where I have gone wrong?
Cheers.
 
Physics news on Phys.org
phagist_ said:

Homework Statement


Let v,w be vectors in a complex inner product space such that ||v|| = 1,
||w|| = 3 and <v,w> = 1 + 2i. Find ||v + iw||.


Homework Equations


The properties of an inner product.


The Attempt at a Solution


I figured
||v+iw||^2 = <v+iw,v+iw>

Then using the properties of the inner product, I broke it up;

||v+iw||^2 = <v,v+iw>+<iw,v+iw>

and <v,v+iw> = <v,v> + <v,iw> and using the 'conjugate symmetry'
= <v,v> - i<v,w>
= 1-i(1+2i)
= 3-i

Now for <iw,v+iw>;
=i<w,v+iw>
=i{<w,v>+<w,iw>}
=i{1-2i - i<w,w>} (since <v,w>=\overline{&lt;w,v&gt;})
=i+2-9i
Here is your error. i(1- 2i- 9i)= i+ 2+ 9. You forgot the second i on the last term.

=2-8i

Now combining it all i get ||v+iw||^2 = 5-9i

But this is supposed to be the square of the magnitude of v+iw.. so it should be a real number right?

Can somebody help point out where I have gone wrong?
Cheers.
 
oops, thanks a lot halls!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top