Hey physics_wiz. Calculating the stress in a cantalivered beam is one thing. Calculating the load required to break the beam is a different issue because to break the beam, things must happen that are not easily calculable. In a typical beam, deformation occurs along the fibers farthest from the neutral axis because the tensile stress is linearly proportional to the distance from the neutral axis. This can be seen from the equation for stress:
S = Mc/I
Where S = stress
M = Moment
c = distance from neutral axis
I = moment of inertia
As the beam deforms, the stress no longer remains linearly proportional as the equation suggests. As the beam yeilds, the stress in the outermost fibers remains almost constant and stretches, while the fibers at a lesser distance to the neutral axis begin to yield. It would be easier to draw a picture here, but those are the limitations of a message board.
A second issue also needs attention. If the beam is long in relation to the depth, the moment does not increase linearly with increased force. That's because the distance between the wall where the beam is mounted and the force decreases as the beam bends.
Taking these two factors into account, one has a very difficult time determining the breaking point.
But if your beam is relatively short and your material relatively brittle (aluminum nitride is very brittle), it could be a bit easier to determine. Unfortunately, you don't have enough information to determine the breaking point of the beam. You need the ultimate tensile strength. Without that, you have no way of doing this. You could look up textbook data for the material, but I wouldn't trust that to within 20%, even if you know everything about the material, so you can assume the calculation you will perform will be off by a fairly large margin.
If I were you, I'd ask the grad student why he wanted to know what load can be applied before breaking. Because that load should never be even close to being applied under normal use. If the beam is being used for something, there are allowable stresses that should never be exceeded in the material. Those allowable stresses are below yield stress by some factor of safety. So you need to find out what the yield and ultimate tensile strength is to work that out.
Just a final note, aluminum nitride is a type of ceramic. See this reference:
http://www.accuratus.com/alumni.html
If the beam is a conventional structural support, I'd be very surpised if it were made from aluminum nitride. Beams aren't generally made from that material. There are aluminum beams, but they are typically aluminum alloy of some type, not aluminum nitride. I'd suggest you verify the material before going any farther.