Finding maxima of a function without prefix

  • Thread starter Thread starter BinBinBinBin
  • Start date Start date
  • Tags Tags
    Function Maxima
Click For Summary
The discussion centers on finding the maximum value of a function involving a standard normal distribution variable, z, and parameters m and c. The user has attempted differentiation but encountered a complex equation when setting the derivative to zero. Suggestions include simplifying the problem by substituting variables and ignoring constant factors, which could lead to a more manageable expression. It is noted that while an analytic solution may not exist, numerical methods could provide insights into the maximum. Overall, the focus is on maximizing the function effectively despite its complexity.
BinBinBinBin
Messages
3
Reaction score
0

Homework Statement



I have been trying to find the value of x that maximizes the function is section 2.

z is a variable distributed using a standard normal distribution i.e. can vary between -∞ and ∞, but generally is between -4 and 4. m varies between 0 and 1. c varies the same way as z.

x is always greater than c (so the function is always real).

Homework Equations



http://www4b.wolframalpha.com/Calculate/MSP/MSP6341gbhe843gi5189e300002d76b658d53h3hd0?MSPStoreType=image/gif&s=45&w=271.&h=47 .

Alternate Wolfram-Alpha link:
http://www.wolframalpha.com/input/?...qrt((x-c)/m))*(erf(z/sqrt(2))-erf(x/sqrt(2)))

The Attempt at a Solution



I basically attempted to differentiate it (which is fine), and it gives me a really complicated solution. I set this to zero (to find the turning point), and am having trouble solving that equation. I was able to find specific values of this maxima by setting the other variables: z, m, c to specific values. For example,

http://www.wolframalpha.com/input/?...2))*(erf(0.5/sqrt(2))-erf(x/sqrt(2))),+maxima

Sorry, this isn't exactly homework, but for a research project I'm working on in college. Any help/guidance will be greatly appreciated.
 
Last edited by a moderator:
Physics news on Phys.org
If it is not homework, there is no guarantee that there is a nice, analytic solution.

You can simplify the problem a bit: Ignore the constant prefactor of sqrt(pi/2), substitute x/sqrt(2) by another variable and do the same for z, c and m.

This should lead to something like
$$y'=\sqrt{\frac{x'-c'}{m'}} \left( erf(z') - erf(x') \right)$$

A maximum of y is a maximum of y^2 as well, so you can square the whole expression and look for a maximum of this. Even if there is no analytic solution, it could be easier to analyze numerically.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
5K